Showing a polynomial having at least one integer root under certain conditions has precisely one integer root












7














$P(x) = 0$ is a polynomial equation having at least one integer root, where $P(x)$ is a polynomial of degree five and having integer coefficients. If $P(2) = 3$ and $P(10)= 11$, then prove that the equation $P(x) = 0$ has exactly one integer root.



I tried by assuming a fifth degree polynomial but got stuck after that.



The question was asked by my friend.










share|cite|improve this question





























    7














    $P(x) = 0$ is a polynomial equation having at least one integer root, where $P(x)$ is a polynomial of degree five and having integer coefficients. If $P(2) = 3$ and $P(10)= 11$, then prove that the equation $P(x) = 0$ has exactly one integer root.



    I tried by assuming a fifth degree polynomial but got stuck after that.



    The question was asked by my friend.










    share|cite|improve this question



























      7












      7








      7


      3





      $P(x) = 0$ is a polynomial equation having at least one integer root, where $P(x)$ is a polynomial of degree five and having integer coefficients. If $P(2) = 3$ and $P(10)= 11$, then prove that the equation $P(x) = 0$ has exactly one integer root.



      I tried by assuming a fifth degree polynomial but got stuck after that.



      The question was asked by my friend.










      share|cite|improve this question















      $P(x) = 0$ is a polynomial equation having at least one integer root, where $P(x)$ is a polynomial of degree five and having integer coefficients. If $P(2) = 3$ and $P(10)= 11$, then prove that the equation $P(x) = 0$ has exactly one integer root.



      I tried by assuming a fifth degree polynomial but got stuck after that.



      The question was asked by my friend.







      polynomials






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 1 hour ago









      Eevee Trainer

      4,390630




      4,390630










      asked 2 hours ago









      Ramanujam Ganit Prashikshan Ke

      1617




      1617






















          2 Answers
          2






          active

          oldest

          votes


















          4














          The assumption that $P$ has degree $5$ is irrelevant and unhelpful.



          If $r$ is a root of $P$, we can write $P(x)=(x-r)Q(x)$ for some polynomial $Q$. If $r$ is an integer, then $Q$ will also have integer coefficients (polynomial division never requires dividing coefficients if you are dividing by a monic polynomial). So, for any integer $a$, $P(a)=(a-r)Q(a)$ must be divisible by $a-r$. Taking $a=2$ and $a=10$, we see easily that the only possible value of $r$ is $-1$.



          Moreover, we can say that $P$ only has one integer root even counting multiplicity, because if $-1$ were a root of higher multiplicity, we could write $P(x)=(x+1)^2R(x)$ where $R(x)$ again has integer coefficients, so $P(2)$ would need to be divisible by $(2+1)^2=9$.






          share|cite|improve this answer





























            3














            If $u$ and $v$ are integer roots of $P$, then $P(x)=(x-u)(x-v)Q(x)$, where $Q$ is a polynomial with integer coefficients. From $P(2)=3$ we get $(u-2)(v-2)mid 3$, and then WLOG either $u-2=1$ or $u-2=-1$, implying $uin{1,3}$. Now $P(10)=11$ gives $(u-10)(v-10)mid 11$, showing that $u-10$ is a divisor of $11$. However, neither $1-10=-9$, not $3-10=-7$ is a divisor of $11$, a contradiction.






            share|cite|improve this answer























              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056616%2fshowing-a-polynomial-having-at-least-one-integer-root-under-certain-conditions-h%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4














              The assumption that $P$ has degree $5$ is irrelevant and unhelpful.



              If $r$ is a root of $P$, we can write $P(x)=(x-r)Q(x)$ for some polynomial $Q$. If $r$ is an integer, then $Q$ will also have integer coefficients (polynomial division never requires dividing coefficients if you are dividing by a monic polynomial). So, for any integer $a$, $P(a)=(a-r)Q(a)$ must be divisible by $a-r$. Taking $a=2$ and $a=10$, we see easily that the only possible value of $r$ is $-1$.



              Moreover, we can say that $P$ only has one integer root even counting multiplicity, because if $-1$ were a root of higher multiplicity, we could write $P(x)=(x+1)^2R(x)$ where $R(x)$ again has integer coefficients, so $P(2)$ would need to be divisible by $(2+1)^2=9$.






              share|cite|improve this answer


























                4














                The assumption that $P$ has degree $5$ is irrelevant and unhelpful.



                If $r$ is a root of $P$, we can write $P(x)=(x-r)Q(x)$ for some polynomial $Q$. If $r$ is an integer, then $Q$ will also have integer coefficients (polynomial division never requires dividing coefficients if you are dividing by a monic polynomial). So, for any integer $a$, $P(a)=(a-r)Q(a)$ must be divisible by $a-r$. Taking $a=2$ and $a=10$, we see easily that the only possible value of $r$ is $-1$.



                Moreover, we can say that $P$ only has one integer root even counting multiplicity, because if $-1$ were a root of higher multiplicity, we could write $P(x)=(x+1)^2R(x)$ where $R(x)$ again has integer coefficients, so $P(2)$ would need to be divisible by $(2+1)^2=9$.






                share|cite|improve this answer
























                  4












                  4








                  4






                  The assumption that $P$ has degree $5$ is irrelevant and unhelpful.



                  If $r$ is a root of $P$, we can write $P(x)=(x-r)Q(x)$ for some polynomial $Q$. If $r$ is an integer, then $Q$ will also have integer coefficients (polynomial division never requires dividing coefficients if you are dividing by a monic polynomial). So, for any integer $a$, $P(a)=(a-r)Q(a)$ must be divisible by $a-r$. Taking $a=2$ and $a=10$, we see easily that the only possible value of $r$ is $-1$.



                  Moreover, we can say that $P$ only has one integer root even counting multiplicity, because if $-1$ were a root of higher multiplicity, we could write $P(x)=(x+1)^2R(x)$ where $R(x)$ again has integer coefficients, so $P(2)$ would need to be divisible by $(2+1)^2=9$.






                  share|cite|improve this answer












                  The assumption that $P$ has degree $5$ is irrelevant and unhelpful.



                  If $r$ is a root of $P$, we can write $P(x)=(x-r)Q(x)$ for some polynomial $Q$. If $r$ is an integer, then $Q$ will also have integer coefficients (polynomial division never requires dividing coefficients if you are dividing by a monic polynomial). So, for any integer $a$, $P(a)=(a-r)Q(a)$ must be divisible by $a-r$. Taking $a=2$ and $a=10$, we see easily that the only possible value of $r$ is $-1$.



                  Moreover, we can say that $P$ only has one integer root even counting multiplicity, because if $-1$ were a root of higher multiplicity, we could write $P(x)=(x+1)^2R(x)$ where $R(x)$ again has integer coefficients, so $P(2)$ would need to be divisible by $(2+1)^2=9$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 1 hour ago









                  Eric Wofsey

                  179k12204331




                  179k12204331























                      3














                      If $u$ and $v$ are integer roots of $P$, then $P(x)=(x-u)(x-v)Q(x)$, where $Q$ is a polynomial with integer coefficients. From $P(2)=3$ we get $(u-2)(v-2)mid 3$, and then WLOG either $u-2=1$ or $u-2=-1$, implying $uin{1,3}$. Now $P(10)=11$ gives $(u-10)(v-10)mid 11$, showing that $u-10$ is a divisor of $11$. However, neither $1-10=-9$, not $3-10=-7$ is a divisor of $11$, a contradiction.






                      share|cite|improve this answer




























                        3














                        If $u$ and $v$ are integer roots of $P$, then $P(x)=(x-u)(x-v)Q(x)$, where $Q$ is a polynomial with integer coefficients. From $P(2)=3$ we get $(u-2)(v-2)mid 3$, and then WLOG either $u-2=1$ or $u-2=-1$, implying $uin{1,3}$. Now $P(10)=11$ gives $(u-10)(v-10)mid 11$, showing that $u-10$ is a divisor of $11$. However, neither $1-10=-9$, not $3-10=-7$ is a divisor of $11$, a contradiction.






                        share|cite|improve this answer


























                          3












                          3








                          3






                          If $u$ and $v$ are integer roots of $P$, then $P(x)=(x-u)(x-v)Q(x)$, where $Q$ is a polynomial with integer coefficients. From $P(2)=3$ we get $(u-2)(v-2)mid 3$, and then WLOG either $u-2=1$ or $u-2=-1$, implying $uin{1,3}$. Now $P(10)=11$ gives $(u-10)(v-10)mid 11$, showing that $u-10$ is a divisor of $11$. However, neither $1-10=-9$, not $3-10=-7$ is a divisor of $11$, a contradiction.






                          share|cite|improve this answer














                          If $u$ and $v$ are integer roots of $P$, then $P(x)=(x-u)(x-v)Q(x)$, where $Q$ is a polynomial with integer coefficients. From $P(2)=3$ we get $(u-2)(v-2)mid 3$, and then WLOG either $u-2=1$ or $u-2=-1$, implying $uin{1,3}$. Now $P(10)=11$ gives $(u-10)(v-10)mid 11$, showing that $u-10$ is a divisor of $11$. However, neither $1-10=-9$, not $3-10=-7$ is a divisor of $11$, a contradiction.







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited 1 hour ago

























                          answered 1 hour ago









                          W-t-P

                          57528




                          57528






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056616%2fshowing-a-polynomial-having-at-least-one-integer-root-under-certain-conditions-h%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Morgemoulin

                              Scott Moir

                              Souastre