Huffman tree compressing/decompressing in C












3














In a past course one of the assignments was to write a program that can compress files using Huffman Tree algorithm, and uncompress the files that the program generates.



My design is to count the byte occurrences first, then construct a HT based on the counted byte frequency.



My compressed file format is 256*4 bytes of "header" that stores the counted frequency, so it can be used to construct the tree when decompressing the file. Then there's a 4-byte integer that indicates how many bits of the last byte is real data. The rest is the real (compressed) data.



Here is this specific version* of code that I want some feedback. Later versions introduced many messy changes (like GUI and buffered I/O) that is not necessary.



Specifically, I'm looking for feedback on my algorithm and data structure implementation, including but not limited to code style, best practices, potential flaws and defects (see below).




  • An exception is the last two functions print_help and main. They're intended to be as simple as possible, so they contain the bare minimum amount of code to work in a reasonable way. Data validation and error checking etc. are omitted on purpose.


In order to simplify the idea, during designing and coding, I have assumed that




  • the program will not be told to uncompress an invalid file, so there's no file validity check in the code

  • file availability is ensured by the environment. It will always be a regular file, with no chance of generating a read error mid-way

  • C library functions does not fail for environmental reasons (e.g. host is short of RAM for malloc(3), target disk out of space for fwrite(3) and consequently write(2), or fread(3) as said above)

  • reading/writing byte-by-byte is fine, because a later version of this code introduced chunk I/O and got a bit messier (I think). Suggestions on making the code run faster without implementing chunk I/O is welcome


so I'm also not looking for feedbacks regarding the above things that I have assumed / intentionally ignored.



I have ensured that the code is working properly, with no warnings when compiled with this command (taken from make output)



gcc -O3 -std=c11 -Wall -Wno-unused-result -o huffman huffman.c


The last option is to suppress the warning about unused result from fread(3).



During my coding process, I run clang-format occasionally and diff the output and my written code to check for potentially bad indentation / styling issues. I am not confident if it can solve everything.



* The link points to my GitHub repo. The code on that page is identical to the code submitted below verbatim.



// File: huffman.c
// Author: iBug

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>

typedef unsigned char byte;

typedef struct _HuffNode {
unsigned data;
struct _HuffNode *left, *right, *parent;
} HuffNode;

void count_frequency(FILE* fp, unsigned* freq) {
size_t orig_pos = ftell(fp);
int ch;
while (1) {
ch = fgetc(fp);
if (ch < 0)
break;
freq[ch]++;
}
fseek(fp, orig_pos, SEEK_SET);
}

void construct_huffman(unsigned* freq_in, HuffNode* tree) {
int count = 256;
unsigned freq[256];
HuffNode *node[256];

// Initialize data
for (int i = 0; i < 256; i++) {
freq[i] = freq_in[i];
tree[i].data = i;
tree[i].left = tree[i].right = NULL;
node[i] = &tree[i];
}

// Sort by frequency, decreasing order
/* WARNING: Although this Quick Sort is an unstable sort,
* it should at least give the same result for the same input frequency table,
* therefore I'm leaving this code here
*/
{
unsigned lower[256], upper[256], top = 1;
lower[0] = 0, upper[0] = 256;
while (top > 0) {
top--;
int left = lower[top], right = upper[top];
int i = left, j = right - 1, flag = 0;
if (i >= j) // Nothing to sort
continue;
while (i < j) {
if (freq[i] < freq[j]) {
unsigned t = freq[i]; freq[i] = freq[j]; freq[j] = t;
HuffNode *p = node[i]; node[i] = node[j]; node[j] = p;
flag = !flag;
}
flag ? i++ : j--;
}
lower[top] = left, upper[top] = i;
lower[top + 1] = i + 1, upper[top + 1] = right;
top += 2;
}
}

// Construct tree
while (count > 1) {
int pos = 512 - count;
HuffNode *parent = &tree[pos];
// Select lowest 2 by freq
int i = count - 2, j = count - 1;
// Create tree, lower freq left
parent->left = node[j]; parent->right = node[i];
node[j]->parent = node[i]->parent = parent;
node[i] = parent;
freq[i] += freq[j];
// Insert
for (; i > 0 && freq[i] > freq[i - 1]; i--) {
unsigned t = freq[i]; freq[i] = freq[i - 1]; freq[i - 1] = t;
HuffNode *p = node[i]; node[i] = node[i - 1]; node[i - 1] = p;
}
count--;
}
// Now HEAD = node[0] = tree[511]
node[0]->parent = NULL;
}

void encode_stream(FILE* fin, FILE* fout, HuffNode* tree, unsigned* padding) {
int n;
byte ch;
byte buf = 0, nbuf = 0;
HuffNode *p;
byte code[256];
while (1) {
n = fgetc(fin);
if (n < 0)
break;
ch = n;

// Encode
p = &tree[ch];
n = 0;
while (p->parent) {
if (p == p->parent->left) {
// Left is 0
code[n] = 0;
} else if (p == p->parent->right) {
code[n] = 1;
}
p = p->parent;
n++;
}

// Write
for (int i = n - 1; i >= 0; i--) {
buf |= code[i] << nbuf;
nbuf++;
if (nbuf == 8) {
fputc(buf, fout);
nbuf = buf = 0;
}
}
}
fputc(buf, fout);
*padding = 8 - nbuf;
}

void decode_stream(FILE* fin, FILE* fout, HuffNode* tree, unsigned padding) {
size_t startpos = ftell(fin); // should be 1028
fseek(fin, 0L, SEEK_END);
size_t endpos = ftell(fin); // last byte handling
fseek(fin, startpos, SEEK_SET);
int count = endpos - startpos;

byte buf = 0, nbuf = 0, bit;
HuffNode *p;
while (count > 0 || nbuf > 0) {
// Start from tree top
p = tree + 510;
while (p->left || p->right) {
// Prepare next bit if needed
if (nbuf == 0) {
if (count <= 0)
return;

buf = fgetc(fin);
if (count == 1) {
// Last bit
nbuf = 8 - padding;
if (nbuf == 0) {
return;
}
} else {
nbuf = 8;
}
count--;
}
// p has child
bit = buf & 1;
buf >>= 1;
nbuf--;
if (bit == 0)
p = p->left;
else
p = p->right;
}
fputc(p->data, fout);
}
}

void compress_file(const char* filename, const char* newname) {
FILE *fin = fopen(filename, "rb"),
*fout = fopen(newname, "wb");

unsigned freq[256], padding;
HuffNode tree[512];
size_t padding_pos;
count_frequency(fin, freq);
construct_huffman(freq, tree);
rewind(fin);
for (int i = 0; i < 256; i++)
fwrite(freq + i, 4, 1, fout);
// Write a placeholder for the padding
padding_pos = ftell(fout);
fwrite(&padding, 4, 1, fout);
encode_stream(fin, fout, tree, &padding);
// Write the padding to the placeholder
fseek(fout, padding_pos, SEEK_SET);
fwrite(&padding, 4, 1, fout);
fclose(fin);
fclose(fout);
}

void uncompress_file(const char* filename, const char* newname) {
FILE *fin = fopen(filename, "rb"),
*fout = fopen(newname, "wb");

unsigned freq[256], padding;
HuffNode tree[512];
for (int i = 0; i < 256; i++) {
fread(&padding, 4, 1, fin);
freq[i] = padding;
}
fread(&padding, 4, 1, fin);
construct_huffman(freq, tree);
decode_stream(fin, fout, tree, padding);
fclose(fin);
fclose(fout);
}

void print_help(void) {
puts("Usage: huffman (-c|-d) input output");
puts(" -c Compress file from input to output");
puts(" -d Uncompress file from input to output");
puts("nCreated by iBug");
}

int main(int argc, char** argv) {
if (argc != 4) {
print_help();
return 1;
}
if (!strcmp(argv[1], "-c")) {
compress_file(argv[2], argv[3]);
} else if (!strcmp(argv[1], "-d")) {
uncompress_file(argv[2], argv[3]);
} else {
print_help();
return 1;
}
return 0;
}


In addition to the mandatory CC BY-SA 3.0 license by posting on Stack Exchange, the code itself also has a MIT license.



On a side note: Although the course has ended and this code is not maintained anymore, it's still one of the programs that I have written with maximum attention and carefulness, so I believe that any feedback to this code is highly valuable and I will remember them in my future C-coding times. Thanks in advance!










share|improve this question







New contributor




iBug is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

























    3














    In a past course one of the assignments was to write a program that can compress files using Huffman Tree algorithm, and uncompress the files that the program generates.



    My design is to count the byte occurrences first, then construct a HT based on the counted byte frequency.



    My compressed file format is 256*4 bytes of "header" that stores the counted frequency, so it can be used to construct the tree when decompressing the file. Then there's a 4-byte integer that indicates how many bits of the last byte is real data. The rest is the real (compressed) data.



    Here is this specific version* of code that I want some feedback. Later versions introduced many messy changes (like GUI and buffered I/O) that is not necessary.



    Specifically, I'm looking for feedback on my algorithm and data structure implementation, including but not limited to code style, best practices, potential flaws and defects (see below).




    • An exception is the last two functions print_help and main. They're intended to be as simple as possible, so they contain the bare minimum amount of code to work in a reasonable way. Data validation and error checking etc. are omitted on purpose.


    In order to simplify the idea, during designing and coding, I have assumed that




    • the program will not be told to uncompress an invalid file, so there's no file validity check in the code

    • file availability is ensured by the environment. It will always be a regular file, with no chance of generating a read error mid-way

    • C library functions does not fail for environmental reasons (e.g. host is short of RAM for malloc(3), target disk out of space for fwrite(3) and consequently write(2), or fread(3) as said above)

    • reading/writing byte-by-byte is fine, because a later version of this code introduced chunk I/O and got a bit messier (I think). Suggestions on making the code run faster without implementing chunk I/O is welcome


    so I'm also not looking for feedbacks regarding the above things that I have assumed / intentionally ignored.



    I have ensured that the code is working properly, with no warnings when compiled with this command (taken from make output)



    gcc -O3 -std=c11 -Wall -Wno-unused-result -o huffman huffman.c


    The last option is to suppress the warning about unused result from fread(3).



    During my coding process, I run clang-format occasionally and diff the output and my written code to check for potentially bad indentation / styling issues. I am not confident if it can solve everything.



    * The link points to my GitHub repo. The code on that page is identical to the code submitted below verbatim.



    // File: huffman.c
    // Author: iBug

    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <stdint.h>

    typedef unsigned char byte;

    typedef struct _HuffNode {
    unsigned data;
    struct _HuffNode *left, *right, *parent;
    } HuffNode;

    void count_frequency(FILE* fp, unsigned* freq) {
    size_t orig_pos = ftell(fp);
    int ch;
    while (1) {
    ch = fgetc(fp);
    if (ch < 0)
    break;
    freq[ch]++;
    }
    fseek(fp, orig_pos, SEEK_SET);
    }

    void construct_huffman(unsigned* freq_in, HuffNode* tree) {
    int count = 256;
    unsigned freq[256];
    HuffNode *node[256];

    // Initialize data
    for (int i = 0; i < 256; i++) {
    freq[i] = freq_in[i];
    tree[i].data = i;
    tree[i].left = tree[i].right = NULL;
    node[i] = &tree[i];
    }

    // Sort by frequency, decreasing order
    /* WARNING: Although this Quick Sort is an unstable sort,
    * it should at least give the same result for the same input frequency table,
    * therefore I'm leaving this code here
    */
    {
    unsigned lower[256], upper[256], top = 1;
    lower[0] = 0, upper[0] = 256;
    while (top > 0) {
    top--;
    int left = lower[top], right = upper[top];
    int i = left, j = right - 1, flag = 0;
    if (i >= j) // Nothing to sort
    continue;
    while (i < j) {
    if (freq[i] < freq[j]) {
    unsigned t = freq[i]; freq[i] = freq[j]; freq[j] = t;
    HuffNode *p = node[i]; node[i] = node[j]; node[j] = p;
    flag = !flag;
    }
    flag ? i++ : j--;
    }
    lower[top] = left, upper[top] = i;
    lower[top + 1] = i + 1, upper[top + 1] = right;
    top += 2;
    }
    }

    // Construct tree
    while (count > 1) {
    int pos = 512 - count;
    HuffNode *parent = &tree[pos];
    // Select lowest 2 by freq
    int i = count - 2, j = count - 1;
    // Create tree, lower freq left
    parent->left = node[j]; parent->right = node[i];
    node[j]->parent = node[i]->parent = parent;
    node[i] = parent;
    freq[i] += freq[j];
    // Insert
    for (; i > 0 && freq[i] > freq[i - 1]; i--) {
    unsigned t = freq[i]; freq[i] = freq[i - 1]; freq[i - 1] = t;
    HuffNode *p = node[i]; node[i] = node[i - 1]; node[i - 1] = p;
    }
    count--;
    }
    // Now HEAD = node[0] = tree[511]
    node[0]->parent = NULL;
    }

    void encode_stream(FILE* fin, FILE* fout, HuffNode* tree, unsigned* padding) {
    int n;
    byte ch;
    byte buf = 0, nbuf = 0;
    HuffNode *p;
    byte code[256];
    while (1) {
    n = fgetc(fin);
    if (n < 0)
    break;
    ch = n;

    // Encode
    p = &tree[ch];
    n = 0;
    while (p->parent) {
    if (p == p->parent->left) {
    // Left is 0
    code[n] = 0;
    } else if (p == p->parent->right) {
    code[n] = 1;
    }
    p = p->parent;
    n++;
    }

    // Write
    for (int i = n - 1; i >= 0; i--) {
    buf |= code[i] << nbuf;
    nbuf++;
    if (nbuf == 8) {
    fputc(buf, fout);
    nbuf = buf = 0;
    }
    }
    }
    fputc(buf, fout);
    *padding = 8 - nbuf;
    }

    void decode_stream(FILE* fin, FILE* fout, HuffNode* tree, unsigned padding) {
    size_t startpos = ftell(fin); // should be 1028
    fseek(fin, 0L, SEEK_END);
    size_t endpos = ftell(fin); // last byte handling
    fseek(fin, startpos, SEEK_SET);
    int count = endpos - startpos;

    byte buf = 0, nbuf = 0, bit;
    HuffNode *p;
    while (count > 0 || nbuf > 0) {
    // Start from tree top
    p = tree + 510;
    while (p->left || p->right) {
    // Prepare next bit if needed
    if (nbuf == 0) {
    if (count <= 0)
    return;

    buf = fgetc(fin);
    if (count == 1) {
    // Last bit
    nbuf = 8 - padding;
    if (nbuf == 0) {
    return;
    }
    } else {
    nbuf = 8;
    }
    count--;
    }
    // p has child
    bit = buf & 1;
    buf >>= 1;
    nbuf--;
    if (bit == 0)
    p = p->left;
    else
    p = p->right;
    }
    fputc(p->data, fout);
    }
    }

    void compress_file(const char* filename, const char* newname) {
    FILE *fin = fopen(filename, "rb"),
    *fout = fopen(newname, "wb");

    unsigned freq[256], padding;
    HuffNode tree[512];
    size_t padding_pos;
    count_frequency(fin, freq);
    construct_huffman(freq, tree);
    rewind(fin);
    for (int i = 0; i < 256; i++)
    fwrite(freq + i, 4, 1, fout);
    // Write a placeholder for the padding
    padding_pos = ftell(fout);
    fwrite(&padding, 4, 1, fout);
    encode_stream(fin, fout, tree, &padding);
    // Write the padding to the placeholder
    fseek(fout, padding_pos, SEEK_SET);
    fwrite(&padding, 4, 1, fout);
    fclose(fin);
    fclose(fout);
    }

    void uncompress_file(const char* filename, const char* newname) {
    FILE *fin = fopen(filename, "rb"),
    *fout = fopen(newname, "wb");

    unsigned freq[256], padding;
    HuffNode tree[512];
    for (int i = 0; i < 256; i++) {
    fread(&padding, 4, 1, fin);
    freq[i] = padding;
    }
    fread(&padding, 4, 1, fin);
    construct_huffman(freq, tree);
    decode_stream(fin, fout, tree, padding);
    fclose(fin);
    fclose(fout);
    }

    void print_help(void) {
    puts("Usage: huffman (-c|-d) input output");
    puts(" -c Compress file from input to output");
    puts(" -d Uncompress file from input to output");
    puts("nCreated by iBug");
    }

    int main(int argc, char** argv) {
    if (argc != 4) {
    print_help();
    return 1;
    }
    if (!strcmp(argv[1], "-c")) {
    compress_file(argv[2], argv[3]);
    } else if (!strcmp(argv[1], "-d")) {
    uncompress_file(argv[2], argv[3]);
    } else {
    print_help();
    return 1;
    }
    return 0;
    }


    In addition to the mandatory CC BY-SA 3.0 license by posting on Stack Exchange, the code itself also has a MIT license.



    On a side note: Although the course has ended and this code is not maintained anymore, it's still one of the programs that I have written with maximum attention and carefulness, so I believe that any feedback to this code is highly valuable and I will remember them in my future C-coding times. Thanks in advance!










    share|improve this question







    New contributor




    iBug is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.























      3












      3








      3







      In a past course one of the assignments was to write a program that can compress files using Huffman Tree algorithm, and uncompress the files that the program generates.



      My design is to count the byte occurrences first, then construct a HT based on the counted byte frequency.



      My compressed file format is 256*4 bytes of "header" that stores the counted frequency, so it can be used to construct the tree when decompressing the file. Then there's a 4-byte integer that indicates how many bits of the last byte is real data. The rest is the real (compressed) data.



      Here is this specific version* of code that I want some feedback. Later versions introduced many messy changes (like GUI and buffered I/O) that is not necessary.



      Specifically, I'm looking for feedback on my algorithm and data structure implementation, including but not limited to code style, best practices, potential flaws and defects (see below).




      • An exception is the last two functions print_help and main. They're intended to be as simple as possible, so they contain the bare minimum amount of code to work in a reasonable way. Data validation and error checking etc. are omitted on purpose.


      In order to simplify the idea, during designing and coding, I have assumed that




      • the program will not be told to uncompress an invalid file, so there's no file validity check in the code

      • file availability is ensured by the environment. It will always be a regular file, with no chance of generating a read error mid-way

      • C library functions does not fail for environmental reasons (e.g. host is short of RAM for malloc(3), target disk out of space for fwrite(3) and consequently write(2), or fread(3) as said above)

      • reading/writing byte-by-byte is fine, because a later version of this code introduced chunk I/O and got a bit messier (I think). Suggestions on making the code run faster without implementing chunk I/O is welcome


      so I'm also not looking for feedbacks regarding the above things that I have assumed / intentionally ignored.



      I have ensured that the code is working properly, with no warnings when compiled with this command (taken from make output)



      gcc -O3 -std=c11 -Wall -Wno-unused-result -o huffman huffman.c


      The last option is to suppress the warning about unused result from fread(3).



      During my coding process, I run clang-format occasionally and diff the output and my written code to check for potentially bad indentation / styling issues. I am not confident if it can solve everything.



      * The link points to my GitHub repo. The code on that page is identical to the code submitted below verbatim.



      // File: huffman.c
      // Author: iBug

      #include <stdio.h>
      #include <stdlib.h>
      #include <string.h>
      #include <stdint.h>

      typedef unsigned char byte;

      typedef struct _HuffNode {
      unsigned data;
      struct _HuffNode *left, *right, *parent;
      } HuffNode;

      void count_frequency(FILE* fp, unsigned* freq) {
      size_t orig_pos = ftell(fp);
      int ch;
      while (1) {
      ch = fgetc(fp);
      if (ch < 0)
      break;
      freq[ch]++;
      }
      fseek(fp, orig_pos, SEEK_SET);
      }

      void construct_huffman(unsigned* freq_in, HuffNode* tree) {
      int count = 256;
      unsigned freq[256];
      HuffNode *node[256];

      // Initialize data
      for (int i = 0; i < 256; i++) {
      freq[i] = freq_in[i];
      tree[i].data = i;
      tree[i].left = tree[i].right = NULL;
      node[i] = &tree[i];
      }

      // Sort by frequency, decreasing order
      /* WARNING: Although this Quick Sort is an unstable sort,
      * it should at least give the same result for the same input frequency table,
      * therefore I'm leaving this code here
      */
      {
      unsigned lower[256], upper[256], top = 1;
      lower[0] = 0, upper[0] = 256;
      while (top > 0) {
      top--;
      int left = lower[top], right = upper[top];
      int i = left, j = right - 1, flag = 0;
      if (i >= j) // Nothing to sort
      continue;
      while (i < j) {
      if (freq[i] < freq[j]) {
      unsigned t = freq[i]; freq[i] = freq[j]; freq[j] = t;
      HuffNode *p = node[i]; node[i] = node[j]; node[j] = p;
      flag = !flag;
      }
      flag ? i++ : j--;
      }
      lower[top] = left, upper[top] = i;
      lower[top + 1] = i + 1, upper[top + 1] = right;
      top += 2;
      }
      }

      // Construct tree
      while (count > 1) {
      int pos = 512 - count;
      HuffNode *parent = &tree[pos];
      // Select lowest 2 by freq
      int i = count - 2, j = count - 1;
      // Create tree, lower freq left
      parent->left = node[j]; parent->right = node[i];
      node[j]->parent = node[i]->parent = parent;
      node[i] = parent;
      freq[i] += freq[j];
      // Insert
      for (; i > 0 && freq[i] > freq[i - 1]; i--) {
      unsigned t = freq[i]; freq[i] = freq[i - 1]; freq[i - 1] = t;
      HuffNode *p = node[i]; node[i] = node[i - 1]; node[i - 1] = p;
      }
      count--;
      }
      // Now HEAD = node[0] = tree[511]
      node[0]->parent = NULL;
      }

      void encode_stream(FILE* fin, FILE* fout, HuffNode* tree, unsigned* padding) {
      int n;
      byte ch;
      byte buf = 0, nbuf = 0;
      HuffNode *p;
      byte code[256];
      while (1) {
      n = fgetc(fin);
      if (n < 0)
      break;
      ch = n;

      // Encode
      p = &tree[ch];
      n = 0;
      while (p->parent) {
      if (p == p->parent->left) {
      // Left is 0
      code[n] = 0;
      } else if (p == p->parent->right) {
      code[n] = 1;
      }
      p = p->parent;
      n++;
      }

      // Write
      for (int i = n - 1; i >= 0; i--) {
      buf |= code[i] << nbuf;
      nbuf++;
      if (nbuf == 8) {
      fputc(buf, fout);
      nbuf = buf = 0;
      }
      }
      }
      fputc(buf, fout);
      *padding = 8 - nbuf;
      }

      void decode_stream(FILE* fin, FILE* fout, HuffNode* tree, unsigned padding) {
      size_t startpos = ftell(fin); // should be 1028
      fseek(fin, 0L, SEEK_END);
      size_t endpos = ftell(fin); // last byte handling
      fseek(fin, startpos, SEEK_SET);
      int count = endpos - startpos;

      byte buf = 0, nbuf = 0, bit;
      HuffNode *p;
      while (count > 0 || nbuf > 0) {
      // Start from tree top
      p = tree + 510;
      while (p->left || p->right) {
      // Prepare next bit if needed
      if (nbuf == 0) {
      if (count <= 0)
      return;

      buf = fgetc(fin);
      if (count == 1) {
      // Last bit
      nbuf = 8 - padding;
      if (nbuf == 0) {
      return;
      }
      } else {
      nbuf = 8;
      }
      count--;
      }
      // p has child
      bit = buf & 1;
      buf >>= 1;
      nbuf--;
      if (bit == 0)
      p = p->left;
      else
      p = p->right;
      }
      fputc(p->data, fout);
      }
      }

      void compress_file(const char* filename, const char* newname) {
      FILE *fin = fopen(filename, "rb"),
      *fout = fopen(newname, "wb");

      unsigned freq[256], padding;
      HuffNode tree[512];
      size_t padding_pos;
      count_frequency(fin, freq);
      construct_huffman(freq, tree);
      rewind(fin);
      for (int i = 0; i < 256; i++)
      fwrite(freq + i, 4, 1, fout);
      // Write a placeholder for the padding
      padding_pos = ftell(fout);
      fwrite(&padding, 4, 1, fout);
      encode_stream(fin, fout, tree, &padding);
      // Write the padding to the placeholder
      fseek(fout, padding_pos, SEEK_SET);
      fwrite(&padding, 4, 1, fout);
      fclose(fin);
      fclose(fout);
      }

      void uncompress_file(const char* filename, const char* newname) {
      FILE *fin = fopen(filename, "rb"),
      *fout = fopen(newname, "wb");

      unsigned freq[256], padding;
      HuffNode tree[512];
      for (int i = 0; i < 256; i++) {
      fread(&padding, 4, 1, fin);
      freq[i] = padding;
      }
      fread(&padding, 4, 1, fin);
      construct_huffman(freq, tree);
      decode_stream(fin, fout, tree, padding);
      fclose(fin);
      fclose(fout);
      }

      void print_help(void) {
      puts("Usage: huffman (-c|-d) input output");
      puts(" -c Compress file from input to output");
      puts(" -d Uncompress file from input to output");
      puts("nCreated by iBug");
      }

      int main(int argc, char** argv) {
      if (argc != 4) {
      print_help();
      return 1;
      }
      if (!strcmp(argv[1], "-c")) {
      compress_file(argv[2], argv[3]);
      } else if (!strcmp(argv[1], "-d")) {
      uncompress_file(argv[2], argv[3]);
      } else {
      print_help();
      return 1;
      }
      return 0;
      }


      In addition to the mandatory CC BY-SA 3.0 license by posting on Stack Exchange, the code itself also has a MIT license.



      On a side note: Although the course has ended and this code is not maintained anymore, it's still one of the programs that I have written with maximum attention and carefulness, so I believe that any feedback to this code is highly valuable and I will remember them in my future C-coding times. Thanks in advance!










      share|improve this question







      New contributor




      iBug is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      In a past course one of the assignments was to write a program that can compress files using Huffman Tree algorithm, and uncompress the files that the program generates.



      My design is to count the byte occurrences first, then construct a HT based on the counted byte frequency.



      My compressed file format is 256*4 bytes of "header" that stores the counted frequency, so it can be used to construct the tree when decompressing the file. Then there's a 4-byte integer that indicates how many bits of the last byte is real data. The rest is the real (compressed) data.



      Here is this specific version* of code that I want some feedback. Later versions introduced many messy changes (like GUI and buffered I/O) that is not necessary.



      Specifically, I'm looking for feedback on my algorithm and data structure implementation, including but not limited to code style, best practices, potential flaws and defects (see below).




      • An exception is the last two functions print_help and main. They're intended to be as simple as possible, so they contain the bare minimum amount of code to work in a reasonable way. Data validation and error checking etc. are omitted on purpose.


      In order to simplify the idea, during designing and coding, I have assumed that




      • the program will not be told to uncompress an invalid file, so there's no file validity check in the code

      • file availability is ensured by the environment. It will always be a regular file, with no chance of generating a read error mid-way

      • C library functions does not fail for environmental reasons (e.g. host is short of RAM for malloc(3), target disk out of space for fwrite(3) and consequently write(2), or fread(3) as said above)

      • reading/writing byte-by-byte is fine, because a later version of this code introduced chunk I/O and got a bit messier (I think). Suggestions on making the code run faster without implementing chunk I/O is welcome


      so I'm also not looking for feedbacks regarding the above things that I have assumed / intentionally ignored.



      I have ensured that the code is working properly, with no warnings when compiled with this command (taken from make output)



      gcc -O3 -std=c11 -Wall -Wno-unused-result -o huffman huffman.c


      The last option is to suppress the warning about unused result from fread(3).



      During my coding process, I run clang-format occasionally and diff the output and my written code to check for potentially bad indentation / styling issues. I am not confident if it can solve everything.



      * The link points to my GitHub repo. The code on that page is identical to the code submitted below verbatim.



      // File: huffman.c
      // Author: iBug

      #include <stdio.h>
      #include <stdlib.h>
      #include <string.h>
      #include <stdint.h>

      typedef unsigned char byte;

      typedef struct _HuffNode {
      unsigned data;
      struct _HuffNode *left, *right, *parent;
      } HuffNode;

      void count_frequency(FILE* fp, unsigned* freq) {
      size_t orig_pos = ftell(fp);
      int ch;
      while (1) {
      ch = fgetc(fp);
      if (ch < 0)
      break;
      freq[ch]++;
      }
      fseek(fp, orig_pos, SEEK_SET);
      }

      void construct_huffman(unsigned* freq_in, HuffNode* tree) {
      int count = 256;
      unsigned freq[256];
      HuffNode *node[256];

      // Initialize data
      for (int i = 0; i < 256; i++) {
      freq[i] = freq_in[i];
      tree[i].data = i;
      tree[i].left = tree[i].right = NULL;
      node[i] = &tree[i];
      }

      // Sort by frequency, decreasing order
      /* WARNING: Although this Quick Sort is an unstable sort,
      * it should at least give the same result for the same input frequency table,
      * therefore I'm leaving this code here
      */
      {
      unsigned lower[256], upper[256], top = 1;
      lower[0] = 0, upper[0] = 256;
      while (top > 0) {
      top--;
      int left = lower[top], right = upper[top];
      int i = left, j = right - 1, flag = 0;
      if (i >= j) // Nothing to sort
      continue;
      while (i < j) {
      if (freq[i] < freq[j]) {
      unsigned t = freq[i]; freq[i] = freq[j]; freq[j] = t;
      HuffNode *p = node[i]; node[i] = node[j]; node[j] = p;
      flag = !flag;
      }
      flag ? i++ : j--;
      }
      lower[top] = left, upper[top] = i;
      lower[top + 1] = i + 1, upper[top + 1] = right;
      top += 2;
      }
      }

      // Construct tree
      while (count > 1) {
      int pos = 512 - count;
      HuffNode *parent = &tree[pos];
      // Select lowest 2 by freq
      int i = count - 2, j = count - 1;
      // Create tree, lower freq left
      parent->left = node[j]; parent->right = node[i];
      node[j]->parent = node[i]->parent = parent;
      node[i] = parent;
      freq[i] += freq[j];
      // Insert
      for (; i > 0 && freq[i] > freq[i - 1]; i--) {
      unsigned t = freq[i]; freq[i] = freq[i - 1]; freq[i - 1] = t;
      HuffNode *p = node[i]; node[i] = node[i - 1]; node[i - 1] = p;
      }
      count--;
      }
      // Now HEAD = node[0] = tree[511]
      node[0]->parent = NULL;
      }

      void encode_stream(FILE* fin, FILE* fout, HuffNode* tree, unsigned* padding) {
      int n;
      byte ch;
      byte buf = 0, nbuf = 0;
      HuffNode *p;
      byte code[256];
      while (1) {
      n = fgetc(fin);
      if (n < 0)
      break;
      ch = n;

      // Encode
      p = &tree[ch];
      n = 0;
      while (p->parent) {
      if (p == p->parent->left) {
      // Left is 0
      code[n] = 0;
      } else if (p == p->parent->right) {
      code[n] = 1;
      }
      p = p->parent;
      n++;
      }

      // Write
      for (int i = n - 1; i >= 0; i--) {
      buf |= code[i] << nbuf;
      nbuf++;
      if (nbuf == 8) {
      fputc(buf, fout);
      nbuf = buf = 0;
      }
      }
      }
      fputc(buf, fout);
      *padding = 8 - nbuf;
      }

      void decode_stream(FILE* fin, FILE* fout, HuffNode* tree, unsigned padding) {
      size_t startpos = ftell(fin); // should be 1028
      fseek(fin, 0L, SEEK_END);
      size_t endpos = ftell(fin); // last byte handling
      fseek(fin, startpos, SEEK_SET);
      int count = endpos - startpos;

      byte buf = 0, nbuf = 0, bit;
      HuffNode *p;
      while (count > 0 || nbuf > 0) {
      // Start from tree top
      p = tree + 510;
      while (p->left || p->right) {
      // Prepare next bit if needed
      if (nbuf == 0) {
      if (count <= 0)
      return;

      buf = fgetc(fin);
      if (count == 1) {
      // Last bit
      nbuf = 8 - padding;
      if (nbuf == 0) {
      return;
      }
      } else {
      nbuf = 8;
      }
      count--;
      }
      // p has child
      bit = buf & 1;
      buf >>= 1;
      nbuf--;
      if (bit == 0)
      p = p->left;
      else
      p = p->right;
      }
      fputc(p->data, fout);
      }
      }

      void compress_file(const char* filename, const char* newname) {
      FILE *fin = fopen(filename, "rb"),
      *fout = fopen(newname, "wb");

      unsigned freq[256], padding;
      HuffNode tree[512];
      size_t padding_pos;
      count_frequency(fin, freq);
      construct_huffman(freq, tree);
      rewind(fin);
      for (int i = 0; i < 256; i++)
      fwrite(freq + i, 4, 1, fout);
      // Write a placeholder for the padding
      padding_pos = ftell(fout);
      fwrite(&padding, 4, 1, fout);
      encode_stream(fin, fout, tree, &padding);
      // Write the padding to the placeholder
      fseek(fout, padding_pos, SEEK_SET);
      fwrite(&padding, 4, 1, fout);
      fclose(fin);
      fclose(fout);
      }

      void uncompress_file(const char* filename, const char* newname) {
      FILE *fin = fopen(filename, "rb"),
      *fout = fopen(newname, "wb");

      unsigned freq[256], padding;
      HuffNode tree[512];
      for (int i = 0; i < 256; i++) {
      fread(&padding, 4, 1, fin);
      freq[i] = padding;
      }
      fread(&padding, 4, 1, fin);
      construct_huffman(freq, tree);
      decode_stream(fin, fout, tree, padding);
      fclose(fin);
      fclose(fout);
      }

      void print_help(void) {
      puts("Usage: huffman (-c|-d) input output");
      puts(" -c Compress file from input to output");
      puts(" -d Uncompress file from input to output");
      puts("nCreated by iBug");
      }

      int main(int argc, char** argv) {
      if (argc != 4) {
      print_help();
      return 1;
      }
      if (!strcmp(argv[1], "-c")) {
      compress_file(argv[2], argv[3]);
      } else if (!strcmp(argv[1], "-d")) {
      uncompress_file(argv[2], argv[3]);
      } else {
      print_help();
      return 1;
      }
      return 0;
      }


      In addition to the mandatory CC BY-SA 3.0 license by posting on Stack Exchange, the code itself also has a MIT license.



      On a side note: Although the course has ended and this code is not maintained anymore, it's still one of the programs that I have written with maximum attention and carefulness, so I believe that any feedback to this code is highly valuable and I will remember them in my future C-coding times. Thanks in advance!







      algorithm c






      share|improve this question







      New contributor




      iBug is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      iBug is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      iBug is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 1 hour ago









      iBug

      1165




      1165




      New contributor




      iBug is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      iBug is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      iBug is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          1 Answer
          1






          active

          oldest

          votes


















          0














          Header size



          256*4 bytes is very big for a header. The size could be reduced substantially by using one or several of these common techniques:




          • Store the code length instead of symbol frequency. These definitely won't need 32 bits each, 8 would already be a lot. You can pack them in 4 bits each if you set a length limit of 15. Storing lengths is not ambiguous because you can use canonical Huffman codes (there is an easy algorithm to generate them from your table of code lengths, discarding the code itself).

          • Compress the header with delta encoding: storing the length difference between subsequent codes, using a variable-length encoding. Small differences tend to be more common. (seen in eg DEFLATE)

          • Remove most zero-lengths from the header, by first storing a sparse bitmap that indicates which symbols occur in the file. (seen in eg bzip2)


          Encoding process



          Walking up the tree for every byte of the file is needlessly inefficient. You could precompute an array of codes and lengths once in advance and then use the array during encoding. The code could be represented as a single unsigned integer, no array necessary (it won't be that long, and you will want to limit the code lengths anyway for decoding and header reasons). It can be prepended to buf in a couple of simple bitwise operations, similar to how you currently add a single bit, but nbuf++ turns into nbuf += codelength. Together this lets the encoding process take a constant number of operations instead of scaling linearly with the code length.



          Decoding process



          Currently your code implements bit-by-bit tree walking, which is (as one source puts it) dead slow. The alternative is decoding several bits at the same time by using an array lookup. There are a lot of subtly different ways to do that, but the basis of all of them is that part of the buffer is used to index into a table. Limiting the maximum length of the codes is very useful, because with a limited length you can guarantee that decoding is a single-step process, resolving one symbol from the buffer in a constant number of operations, with no looping.



          Some possible relevant sources for these techniques are the one in the previous paragraph and:




          • Introduction to table based Huffman decoding

          • An efficient algorithm of Huffman decoder with nearly constant decoding time

          • Huffman revisited - Part 2 : the Decoder


          • A Fast and Space - Economical Algorithm for Length - Limited Coding (for a way to generate the code lengths with a length limit)






          share|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "196"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            iBug is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210654%2fhuffman-tree-compressing-decompressing-in-c%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0














            Header size



            256*4 bytes is very big for a header. The size could be reduced substantially by using one or several of these common techniques:




            • Store the code length instead of symbol frequency. These definitely won't need 32 bits each, 8 would already be a lot. You can pack them in 4 bits each if you set a length limit of 15. Storing lengths is not ambiguous because you can use canonical Huffman codes (there is an easy algorithm to generate them from your table of code lengths, discarding the code itself).

            • Compress the header with delta encoding: storing the length difference between subsequent codes, using a variable-length encoding. Small differences tend to be more common. (seen in eg DEFLATE)

            • Remove most zero-lengths from the header, by first storing a sparse bitmap that indicates which symbols occur in the file. (seen in eg bzip2)


            Encoding process



            Walking up the tree for every byte of the file is needlessly inefficient. You could precompute an array of codes and lengths once in advance and then use the array during encoding. The code could be represented as a single unsigned integer, no array necessary (it won't be that long, and you will want to limit the code lengths anyway for decoding and header reasons). It can be prepended to buf in a couple of simple bitwise operations, similar to how you currently add a single bit, but nbuf++ turns into nbuf += codelength. Together this lets the encoding process take a constant number of operations instead of scaling linearly with the code length.



            Decoding process



            Currently your code implements bit-by-bit tree walking, which is (as one source puts it) dead slow. The alternative is decoding several bits at the same time by using an array lookup. There are a lot of subtly different ways to do that, but the basis of all of them is that part of the buffer is used to index into a table. Limiting the maximum length of the codes is very useful, because with a limited length you can guarantee that decoding is a single-step process, resolving one symbol from the buffer in a constant number of operations, with no looping.



            Some possible relevant sources for these techniques are the one in the previous paragraph and:




            • Introduction to table based Huffman decoding

            • An efficient algorithm of Huffman decoder with nearly constant decoding time

            • Huffman revisited - Part 2 : the Decoder


            • A Fast and Space - Economical Algorithm for Length - Limited Coding (for a way to generate the code lengths with a length limit)






            share|improve this answer


























              0














              Header size



              256*4 bytes is very big for a header. The size could be reduced substantially by using one or several of these common techniques:




              • Store the code length instead of symbol frequency. These definitely won't need 32 bits each, 8 would already be a lot. You can pack them in 4 bits each if you set a length limit of 15. Storing lengths is not ambiguous because you can use canonical Huffman codes (there is an easy algorithm to generate them from your table of code lengths, discarding the code itself).

              • Compress the header with delta encoding: storing the length difference between subsequent codes, using a variable-length encoding. Small differences tend to be more common. (seen in eg DEFLATE)

              • Remove most zero-lengths from the header, by first storing a sparse bitmap that indicates which symbols occur in the file. (seen in eg bzip2)


              Encoding process



              Walking up the tree for every byte of the file is needlessly inefficient. You could precompute an array of codes and lengths once in advance and then use the array during encoding. The code could be represented as a single unsigned integer, no array necessary (it won't be that long, and you will want to limit the code lengths anyway for decoding and header reasons). It can be prepended to buf in a couple of simple bitwise operations, similar to how you currently add a single bit, but nbuf++ turns into nbuf += codelength. Together this lets the encoding process take a constant number of operations instead of scaling linearly with the code length.



              Decoding process



              Currently your code implements bit-by-bit tree walking, which is (as one source puts it) dead slow. The alternative is decoding several bits at the same time by using an array lookup. There are a lot of subtly different ways to do that, but the basis of all of them is that part of the buffer is used to index into a table. Limiting the maximum length of the codes is very useful, because with a limited length you can guarantee that decoding is a single-step process, resolving one symbol from the buffer in a constant number of operations, with no looping.



              Some possible relevant sources for these techniques are the one in the previous paragraph and:




              • Introduction to table based Huffman decoding

              • An efficient algorithm of Huffman decoder with nearly constant decoding time

              • Huffman revisited - Part 2 : the Decoder


              • A Fast and Space - Economical Algorithm for Length - Limited Coding (for a way to generate the code lengths with a length limit)






              share|improve this answer
























                0












                0








                0






                Header size



                256*4 bytes is very big for a header. The size could be reduced substantially by using one or several of these common techniques:




                • Store the code length instead of symbol frequency. These definitely won't need 32 bits each, 8 would already be a lot. You can pack them in 4 bits each if you set a length limit of 15. Storing lengths is not ambiguous because you can use canonical Huffman codes (there is an easy algorithm to generate them from your table of code lengths, discarding the code itself).

                • Compress the header with delta encoding: storing the length difference between subsequent codes, using a variable-length encoding. Small differences tend to be more common. (seen in eg DEFLATE)

                • Remove most zero-lengths from the header, by first storing a sparse bitmap that indicates which symbols occur in the file. (seen in eg bzip2)


                Encoding process



                Walking up the tree for every byte of the file is needlessly inefficient. You could precompute an array of codes and lengths once in advance and then use the array during encoding. The code could be represented as a single unsigned integer, no array necessary (it won't be that long, and you will want to limit the code lengths anyway for decoding and header reasons). It can be prepended to buf in a couple of simple bitwise operations, similar to how you currently add a single bit, but nbuf++ turns into nbuf += codelength. Together this lets the encoding process take a constant number of operations instead of scaling linearly with the code length.



                Decoding process



                Currently your code implements bit-by-bit tree walking, which is (as one source puts it) dead slow. The alternative is decoding several bits at the same time by using an array lookup. There are a lot of subtly different ways to do that, but the basis of all of them is that part of the buffer is used to index into a table. Limiting the maximum length of the codes is very useful, because with a limited length you can guarantee that decoding is a single-step process, resolving one symbol from the buffer in a constant number of operations, with no looping.



                Some possible relevant sources for these techniques are the one in the previous paragraph and:




                • Introduction to table based Huffman decoding

                • An efficient algorithm of Huffman decoder with nearly constant decoding time

                • Huffman revisited - Part 2 : the Decoder


                • A Fast and Space - Economical Algorithm for Length - Limited Coding (for a way to generate the code lengths with a length limit)






                share|improve this answer












                Header size



                256*4 bytes is very big for a header. The size could be reduced substantially by using one or several of these common techniques:




                • Store the code length instead of symbol frequency. These definitely won't need 32 bits each, 8 would already be a lot. You can pack them in 4 bits each if you set a length limit of 15. Storing lengths is not ambiguous because you can use canonical Huffman codes (there is an easy algorithm to generate them from your table of code lengths, discarding the code itself).

                • Compress the header with delta encoding: storing the length difference between subsequent codes, using a variable-length encoding. Small differences tend to be more common. (seen in eg DEFLATE)

                • Remove most zero-lengths from the header, by first storing a sparse bitmap that indicates which symbols occur in the file. (seen in eg bzip2)


                Encoding process



                Walking up the tree for every byte of the file is needlessly inefficient. You could precompute an array of codes and lengths once in advance and then use the array during encoding. The code could be represented as a single unsigned integer, no array necessary (it won't be that long, and you will want to limit the code lengths anyway for decoding and header reasons). It can be prepended to buf in a couple of simple bitwise operations, similar to how you currently add a single bit, but nbuf++ turns into nbuf += codelength. Together this lets the encoding process take a constant number of operations instead of scaling linearly with the code length.



                Decoding process



                Currently your code implements bit-by-bit tree walking, which is (as one source puts it) dead slow. The alternative is decoding several bits at the same time by using an array lookup. There are a lot of subtly different ways to do that, but the basis of all of them is that part of the buffer is used to index into a table. Limiting the maximum length of the codes is very useful, because with a limited length you can guarantee that decoding is a single-step process, resolving one symbol from the buffer in a constant number of operations, with no looping.



                Some possible relevant sources for these techniques are the one in the previous paragraph and:




                • Introduction to table based Huffman decoding

                • An efficient algorithm of Huffman decoder with nearly constant decoding time

                • Huffman revisited - Part 2 : the Decoder


                • A Fast and Space - Economical Algorithm for Length - Limited Coding (for a way to generate the code lengths with a length limit)







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 52 mins ago









                harold

                1,02857




                1,02857






















                    iBug is a new contributor. Be nice, and check out our Code of Conduct.










                    draft saved

                    draft discarded


















                    iBug is a new contributor. Be nice, and check out our Code of Conduct.













                    iBug is a new contributor. Be nice, and check out our Code of Conduct.












                    iBug is a new contributor. Be nice, and check out our Code of Conduct.
















                    Thanks for contributing an answer to Code Review Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210654%2fhuffman-tree-compressing-decompressing-in-c%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Morgemoulin

                    Scott Moir

                    Souastre