Proving that 2 functions are bounded.












2














Let $f,g:mathbb R to mathbb R$. Let $h_1$ = $f-g$ and $h_2$ = $f+g$. Suppose $h_1$ and $h_2$ are bounded. Show that $f$ and $g$ are bounded.



I understand the concept of bounded but would've thought you would need to use limits or a derivative to do a proof. How would you accomplish this without one.










share|cite|improve this question




















  • 2




    Express $f,g $ in the form of $h_2, h_1$.
    – xbh
    Dec 18 at 4:57










  • $|f(x) pm g(x) | le |f(x)| + |g(x)|$ for all $f,g,x$ so the sum and difference of bounded functions is bounded.
    – Henno Brandsma
    Dec 18 at 5:11
















2














Let $f,g:mathbb R to mathbb R$. Let $h_1$ = $f-g$ and $h_2$ = $f+g$. Suppose $h_1$ and $h_2$ are bounded. Show that $f$ and $g$ are bounded.



I understand the concept of bounded but would've thought you would need to use limits or a derivative to do a proof. How would you accomplish this without one.










share|cite|improve this question




















  • 2




    Express $f,g $ in the form of $h_2, h_1$.
    – xbh
    Dec 18 at 4:57










  • $|f(x) pm g(x) | le |f(x)| + |g(x)|$ for all $f,g,x$ so the sum and difference of bounded functions is bounded.
    – Henno Brandsma
    Dec 18 at 5:11














2












2








2







Let $f,g:mathbb R to mathbb R$. Let $h_1$ = $f-g$ and $h_2$ = $f+g$. Suppose $h_1$ and $h_2$ are bounded. Show that $f$ and $g$ are bounded.



I understand the concept of bounded but would've thought you would need to use limits or a derivative to do a proof. How would you accomplish this without one.










share|cite|improve this question















Let $f,g:mathbb R to mathbb R$. Let $h_1$ = $f-g$ and $h_2$ = $f+g$. Suppose $h_1$ and $h_2$ are bounded. Show that $f$ and $g$ are bounded.



I understand the concept of bounded but would've thought you would need to use limits or a derivative to do a proof. How would you accomplish this without one.







real-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 18 at 8:32









Carmeister

2,6742920




2,6742920










asked Dec 18 at 4:51









Pablo Tores

387




387








  • 2




    Express $f,g $ in the form of $h_2, h_1$.
    – xbh
    Dec 18 at 4:57










  • $|f(x) pm g(x) | le |f(x)| + |g(x)|$ for all $f,g,x$ so the sum and difference of bounded functions is bounded.
    – Henno Brandsma
    Dec 18 at 5:11














  • 2




    Express $f,g $ in the form of $h_2, h_1$.
    – xbh
    Dec 18 at 4:57










  • $|f(x) pm g(x) | le |f(x)| + |g(x)|$ for all $f,g,x$ so the sum and difference of bounded functions is bounded.
    – Henno Brandsma
    Dec 18 at 5:11








2




2




Express $f,g $ in the form of $h_2, h_1$.
– xbh
Dec 18 at 4:57




Express $f,g $ in the form of $h_2, h_1$.
– xbh
Dec 18 at 4:57












$|f(x) pm g(x) | le |f(x)| + |g(x)|$ for all $f,g,x$ so the sum and difference of bounded functions is bounded.
– Henno Brandsma
Dec 18 at 5:11




$|f(x) pm g(x) | le |f(x)| + |g(x)|$ for all $f,g,x$ so the sum and difference of bounded functions is bounded.
– Henno Brandsma
Dec 18 at 5:11










2 Answers
2






active

oldest

votes


















5














The sum of bounded functions is bounded and so are scalar multiples. Note that $f= frac{h_1 + h_2}{2}$.



Likewise for differences of bounded functions and $g = frac{h_2 - h_1}{2}$.






share|cite|improve this answer





























    1














    Suppose $h_1, h_2$ are bounded. Let $D(f)$ denote the domain of $f$, where $f$ is a function. Then $exists M_1, M_2$ such that $$h_1(x) = f(x) - g(x) leq M_1 forall x in D(h_1), $$ $$h_2(x) = f(x) + g(x) leq M_2 forall x in D(h_2).$$ So, we have that for arbitrary $x in D(f) cap D(g)$, $$ f(x) - g(x) + f(x) + g(x) = 2f(x) leq M_1 + M_2 implies f(x) leq frac{M_1 + M_2}{2}, $$
    so $f$ is bounded, by definition. Similarly, notice that
    $$ g(x) - f(x) + g(x) + f(x) = 2g(x) leq M_2 - M_1 implies g(x) leq frac{M_2 - M_1}{2}, $$
    so $g$ is bounded, by definition. This completes the proof.






    share|cite|improve this answer



















    • 1




      Maybe it should be $xin D(h_1)cap D(h_2)$?
      – Shubham Johri
      Dec 18 at 5:54












    • Ah, you are right; good catch! I've edited my answer to include this.
      – alexsieusahai
      Dec 18 at 5:58











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044784%2fproving-that-2-functions-are-bounded%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5














    The sum of bounded functions is bounded and so are scalar multiples. Note that $f= frac{h_1 + h_2}{2}$.



    Likewise for differences of bounded functions and $g = frac{h_2 - h_1}{2}$.






    share|cite|improve this answer


























      5














      The sum of bounded functions is bounded and so are scalar multiples. Note that $f= frac{h_1 + h_2}{2}$.



      Likewise for differences of bounded functions and $g = frac{h_2 - h_1}{2}$.






      share|cite|improve this answer
























        5












        5








        5






        The sum of bounded functions is bounded and so are scalar multiples. Note that $f= frac{h_1 + h_2}{2}$.



        Likewise for differences of bounded functions and $g = frac{h_2 - h_1}{2}$.






        share|cite|improve this answer












        The sum of bounded functions is bounded and so are scalar multiples. Note that $f= frac{h_1 + h_2}{2}$.



        Likewise for differences of bounded functions and $g = frac{h_2 - h_1}{2}$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 18 at 5:08









        Henno Brandsma

        105k346114




        105k346114























            1














            Suppose $h_1, h_2$ are bounded. Let $D(f)$ denote the domain of $f$, where $f$ is a function. Then $exists M_1, M_2$ such that $$h_1(x) = f(x) - g(x) leq M_1 forall x in D(h_1), $$ $$h_2(x) = f(x) + g(x) leq M_2 forall x in D(h_2).$$ So, we have that for arbitrary $x in D(f) cap D(g)$, $$ f(x) - g(x) + f(x) + g(x) = 2f(x) leq M_1 + M_2 implies f(x) leq frac{M_1 + M_2}{2}, $$
            so $f$ is bounded, by definition. Similarly, notice that
            $$ g(x) - f(x) + g(x) + f(x) = 2g(x) leq M_2 - M_1 implies g(x) leq frac{M_2 - M_1}{2}, $$
            so $g$ is bounded, by definition. This completes the proof.






            share|cite|improve this answer



















            • 1




              Maybe it should be $xin D(h_1)cap D(h_2)$?
              – Shubham Johri
              Dec 18 at 5:54












            • Ah, you are right; good catch! I've edited my answer to include this.
              – alexsieusahai
              Dec 18 at 5:58
















            1














            Suppose $h_1, h_2$ are bounded. Let $D(f)$ denote the domain of $f$, where $f$ is a function. Then $exists M_1, M_2$ such that $$h_1(x) = f(x) - g(x) leq M_1 forall x in D(h_1), $$ $$h_2(x) = f(x) + g(x) leq M_2 forall x in D(h_2).$$ So, we have that for arbitrary $x in D(f) cap D(g)$, $$ f(x) - g(x) + f(x) + g(x) = 2f(x) leq M_1 + M_2 implies f(x) leq frac{M_1 + M_2}{2}, $$
            so $f$ is bounded, by definition. Similarly, notice that
            $$ g(x) - f(x) + g(x) + f(x) = 2g(x) leq M_2 - M_1 implies g(x) leq frac{M_2 - M_1}{2}, $$
            so $g$ is bounded, by definition. This completes the proof.






            share|cite|improve this answer



















            • 1




              Maybe it should be $xin D(h_1)cap D(h_2)$?
              – Shubham Johri
              Dec 18 at 5:54












            • Ah, you are right; good catch! I've edited my answer to include this.
              – alexsieusahai
              Dec 18 at 5:58














            1












            1








            1






            Suppose $h_1, h_2$ are bounded. Let $D(f)$ denote the domain of $f$, where $f$ is a function. Then $exists M_1, M_2$ such that $$h_1(x) = f(x) - g(x) leq M_1 forall x in D(h_1), $$ $$h_2(x) = f(x) + g(x) leq M_2 forall x in D(h_2).$$ So, we have that for arbitrary $x in D(f) cap D(g)$, $$ f(x) - g(x) + f(x) + g(x) = 2f(x) leq M_1 + M_2 implies f(x) leq frac{M_1 + M_2}{2}, $$
            so $f$ is bounded, by definition. Similarly, notice that
            $$ g(x) - f(x) + g(x) + f(x) = 2g(x) leq M_2 - M_1 implies g(x) leq frac{M_2 - M_1}{2}, $$
            so $g$ is bounded, by definition. This completes the proof.






            share|cite|improve this answer














            Suppose $h_1, h_2$ are bounded. Let $D(f)$ denote the domain of $f$, where $f$ is a function. Then $exists M_1, M_2$ such that $$h_1(x) = f(x) - g(x) leq M_1 forall x in D(h_1), $$ $$h_2(x) = f(x) + g(x) leq M_2 forall x in D(h_2).$$ So, we have that for arbitrary $x in D(f) cap D(g)$, $$ f(x) - g(x) + f(x) + g(x) = 2f(x) leq M_1 + M_2 implies f(x) leq frac{M_1 + M_2}{2}, $$
            so $f$ is bounded, by definition. Similarly, notice that
            $$ g(x) - f(x) + g(x) + f(x) = 2g(x) leq M_2 - M_1 implies g(x) leq frac{M_2 - M_1}{2}, $$
            so $g$ is bounded, by definition. This completes the proof.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 18 at 5:58

























            answered Dec 18 at 5:37









            alexsieusahai

            638




            638








            • 1




              Maybe it should be $xin D(h_1)cap D(h_2)$?
              – Shubham Johri
              Dec 18 at 5:54












            • Ah, you are right; good catch! I've edited my answer to include this.
              – alexsieusahai
              Dec 18 at 5:58














            • 1




              Maybe it should be $xin D(h_1)cap D(h_2)$?
              – Shubham Johri
              Dec 18 at 5:54












            • Ah, you are right; good catch! I've edited my answer to include this.
              – alexsieusahai
              Dec 18 at 5:58








            1




            1




            Maybe it should be $xin D(h_1)cap D(h_2)$?
            – Shubham Johri
            Dec 18 at 5:54






            Maybe it should be $xin D(h_1)cap D(h_2)$?
            – Shubham Johri
            Dec 18 at 5:54














            Ah, you are right; good catch! I've edited my answer to include this.
            – alexsieusahai
            Dec 18 at 5:58




            Ah, you are right; good catch! I've edited my answer to include this.
            – alexsieusahai
            Dec 18 at 5:58


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044784%2fproving-that-2-functions-are-bounded%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Morgemoulin

            Scott Moir

            Souastre