Accessing a file in multiple python processes or threads
I have one python script which is generating data and one which is training a neural network with tensorflow on this data. Both need an instance of the neural network.
Since I haven't set the flag "allow growth" each process takes the full GPU memory. Therefore I simply give each process it's own GPU. (Maybe not a good solution for people with only one GPU... yet another unsolved problem)
The actual problem is as follow: Both instances need access to the networks weights file. I recently had a bunch of crashes because both processes tried to access the weights. I tried to come up with a solution like semaphores in C, but today I found this post in stack-exchange.
The idea with renaming seems quite simple and effective to me. Is this good practice in my case? I'll just create the weight file with my function
save(self, path='weights.h5$$$')
in the learning process, rename them after saving with
os.rename(weights.h5$$$, weights.h5)
and load them in my data generating process with function
load(self, path='weights.h5')
?
Will this renaming overwrite the old file? And what happens if the other process ins currently loading? I would appreciate other ideas how I could multithread my script. Just realized that generating data, learn, generating data,... in a sequential script is not really performant.
python multithreading multiprocessing
add a comment |
I have one python script which is generating data and one which is training a neural network with tensorflow on this data. Both need an instance of the neural network.
Since I haven't set the flag "allow growth" each process takes the full GPU memory. Therefore I simply give each process it's own GPU. (Maybe not a good solution for people with only one GPU... yet another unsolved problem)
The actual problem is as follow: Both instances need access to the networks weights file. I recently had a bunch of crashes because both processes tried to access the weights. I tried to come up with a solution like semaphores in C, but today I found this post in stack-exchange.
The idea with renaming seems quite simple and effective to me. Is this good practice in my case? I'll just create the weight file with my function
save(self, path='weights.h5$$$')
in the learning process, rename them after saving with
os.rename(weights.h5$$$, weights.h5)
and load them in my data generating process with function
load(self, path='weights.h5')
?
Will this renaming overwrite the old file? And what happens if the other process ins currently loading? I would appreciate other ideas how I could multithread my script. Just realized that generating data, learn, generating data,... in a sequential script is not really performant.
python multithreading multiprocessing
add a comment |
I have one python script which is generating data and one which is training a neural network with tensorflow on this data. Both need an instance of the neural network.
Since I haven't set the flag "allow growth" each process takes the full GPU memory. Therefore I simply give each process it's own GPU. (Maybe not a good solution for people with only one GPU... yet another unsolved problem)
The actual problem is as follow: Both instances need access to the networks weights file. I recently had a bunch of crashes because both processes tried to access the weights. I tried to come up with a solution like semaphores in C, but today I found this post in stack-exchange.
The idea with renaming seems quite simple and effective to me. Is this good practice in my case? I'll just create the weight file with my function
save(self, path='weights.h5$$$')
in the learning process, rename them after saving with
os.rename(weights.h5$$$, weights.h5)
and load them in my data generating process with function
load(self, path='weights.h5')
?
Will this renaming overwrite the old file? And what happens if the other process ins currently loading? I would appreciate other ideas how I could multithread my script. Just realized that generating data, learn, generating data,... in a sequential script is not really performant.
python multithreading multiprocessing
I have one python script which is generating data and one which is training a neural network with tensorflow on this data. Both need an instance of the neural network.
Since I haven't set the flag "allow growth" each process takes the full GPU memory. Therefore I simply give each process it's own GPU. (Maybe not a good solution for people with only one GPU... yet another unsolved problem)
The actual problem is as follow: Both instances need access to the networks weights file. I recently had a bunch of crashes because both processes tried to access the weights. I tried to come up with a solution like semaphores in C, but today I found this post in stack-exchange.
The idea with renaming seems quite simple and effective to me. Is this good practice in my case? I'll just create the weight file with my function
save(self, path='weights.h5$$$')
in the learning process, rename them after saving with
os.rename(weights.h5$$$, weights.h5)
and load them in my data generating process with function
load(self, path='weights.h5')
?
Will this renaming overwrite the old file? And what happens if the other process ins currently loading? I would appreciate other ideas how I could multithread my script. Just realized that generating data, learn, generating data,... in a sequential script is not really performant.
python multithreading multiprocessing
python multithreading multiprocessing
asked 24 mins ago
Mr.Sh4nnon
385
385
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "196"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210712%2faccessing-a-file-in-multiple-python-processes-or-threads%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210712%2faccessing-a-file-in-multiple-python-processes-or-threads%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown