How likely is the flotsam of a space battle to be captured by our sun's gravity well?
A light-year distant from Sol saw the collision of a massive space-born battle fleet against an awe-inspiring dreadnought. At one point in the battle, the flotilla fired rail-guns with 100 metric ton slugs and nuclear missiles.
...And a lot of them missed their target
...And kept on sailing through space, generally toward our beloved Sol.
Eons later, while eating an Italian custard at a French bistro whilst admiring the visas in my American passport, I look up to see an odd reflection in the early afternoon sun. Hours later, Earth becomes collateral damage in a battle fought long before Gelato ice cream was invented.
Ignore the scattering effect of objects sailing through space. Assume that the rail-gun slugs and missiles (their fuel long since exhausted) are lined up to pass through our system 15 degrees above the ecliptic and 2 AU from the sun.
Assume the missiles are similar in size and mass to a Minuteman-III missile.
Rail-gun slug: 100 metric tons, muzzle velocity of 2.5 Km/s.
Question: Is it possible for these munitions to become captured in our sun's gravity well, thereby making them a believable catastrophe-in-the-making?
gravity orbital-mechanics
add a comment |
A light-year distant from Sol saw the collision of a massive space-born battle fleet against an awe-inspiring dreadnought. At one point in the battle, the flotilla fired rail-guns with 100 metric ton slugs and nuclear missiles.
...And a lot of them missed their target
...And kept on sailing through space, generally toward our beloved Sol.
Eons later, while eating an Italian custard at a French bistro whilst admiring the visas in my American passport, I look up to see an odd reflection in the early afternoon sun. Hours later, Earth becomes collateral damage in a battle fought long before Gelato ice cream was invented.
Ignore the scattering effect of objects sailing through space. Assume that the rail-gun slugs and missiles (their fuel long since exhausted) are lined up to pass through our system 15 degrees above the ecliptic and 2 AU from the sun.
Assume the missiles are similar in size and mass to a Minuteman-III missile.
Rail-gun slug: 100 metric tons, muzzle velocity of 2.5 Km/s.
Question: Is it possible for these munitions to become captured in our sun's gravity well, thereby making them a believable catastrophe-in-the-making?
gravity orbital-mechanics
1
"15 degrees above the ecliptic" does not actually mean anything. Please rephrase this. Do you mean that at closest approach to the sun it will appear to be 15 degrees above or below the plane of the ecliptic when observed from earth? If so, calculate the actual distance involved, and then try to reconcile it with your 2 AU number.
– WhatRoughBeast
38 mins ago
add a comment |
A light-year distant from Sol saw the collision of a massive space-born battle fleet against an awe-inspiring dreadnought. At one point in the battle, the flotilla fired rail-guns with 100 metric ton slugs and nuclear missiles.
...And a lot of them missed their target
...And kept on sailing through space, generally toward our beloved Sol.
Eons later, while eating an Italian custard at a French bistro whilst admiring the visas in my American passport, I look up to see an odd reflection in the early afternoon sun. Hours later, Earth becomes collateral damage in a battle fought long before Gelato ice cream was invented.
Ignore the scattering effect of objects sailing through space. Assume that the rail-gun slugs and missiles (their fuel long since exhausted) are lined up to pass through our system 15 degrees above the ecliptic and 2 AU from the sun.
Assume the missiles are similar in size and mass to a Minuteman-III missile.
Rail-gun slug: 100 metric tons, muzzle velocity of 2.5 Km/s.
Question: Is it possible for these munitions to become captured in our sun's gravity well, thereby making them a believable catastrophe-in-the-making?
gravity orbital-mechanics
A light-year distant from Sol saw the collision of a massive space-born battle fleet against an awe-inspiring dreadnought. At one point in the battle, the flotilla fired rail-guns with 100 metric ton slugs and nuclear missiles.
...And a lot of them missed their target
...And kept on sailing through space, generally toward our beloved Sol.
Eons later, while eating an Italian custard at a French bistro whilst admiring the visas in my American passport, I look up to see an odd reflection in the early afternoon sun. Hours later, Earth becomes collateral damage in a battle fought long before Gelato ice cream was invented.
Ignore the scattering effect of objects sailing through space. Assume that the rail-gun slugs and missiles (their fuel long since exhausted) are lined up to pass through our system 15 degrees above the ecliptic and 2 AU from the sun.
Assume the missiles are similar in size and mass to a Minuteman-III missile.
Rail-gun slug: 100 metric tons, muzzle velocity of 2.5 Km/s.
Question: Is it possible for these munitions to become captured in our sun's gravity well, thereby making them a believable catastrophe-in-the-making?
gravity orbital-mechanics
gravity orbital-mechanics
edited 35 mins ago
L.Dutch♦
75.2k24180366
75.2k24180366
asked 4 hours ago
JBH
38.2k584185
38.2k584185
1
"15 degrees above the ecliptic" does not actually mean anything. Please rephrase this. Do you mean that at closest approach to the sun it will appear to be 15 degrees above or below the plane of the ecliptic when observed from earth? If so, calculate the actual distance involved, and then try to reconcile it with your 2 AU number.
– WhatRoughBeast
38 mins ago
add a comment |
1
"15 degrees above the ecliptic" does not actually mean anything. Please rephrase this. Do you mean that at closest approach to the sun it will appear to be 15 degrees above or below the plane of the ecliptic when observed from earth? If so, calculate the actual distance involved, and then try to reconcile it with your 2 AU number.
– WhatRoughBeast
38 mins ago
1
1
"15 degrees above the ecliptic" does not actually mean anything. Please rephrase this. Do you mean that at closest approach to the sun it will appear to be 15 degrees above or below the plane of the ecliptic when observed from earth? If so, calculate the actual distance involved, and then try to reconcile it with your 2 AU number.
– WhatRoughBeast
38 mins ago
"15 degrees above the ecliptic" does not actually mean anything. Please rephrase this. Do you mean that at closest approach to the sun it will appear to be 15 degrees above or below the plane of the ecliptic when observed from earth? If so, calculate the actual distance involved, and then try to reconcile it with your 2 AU number.
– WhatRoughBeast
38 mins ago
add a comment |
5 Answers
5
active
oldest
votes
Virtually none of them would be captured and it's unlikely we'd notice anything whizzing past.
Basically, an object that falls into a gravity well from infinity (and a light year off is pretty close to that) will, unless it hits something while passing through, fall right back out again. By definition it picks up escape velocity as it falls in and loses it as it falls back out. So it passes through the solar system on a hyperbolic trajectory. And if the projectiles were moving at high speed before falling into the solar system, it will be a very flat hyperbola -- i.e., they'll hardly be deflected at all by the Sun's gravity.
If the slugs are aimed to pass through at 2AU, there's basically nothing there to hit and all they do is think to themselves, "Here comes the Sun...there goes the Sun...hello interstellar darkness..."
(I'm not quite sure what you mean by "to pass through our system 15 degrees above the ecliptic." It you mean they are aimed to pass well above the plane of the planetary orbits, then there's still less likely to hit anything or even be noticed.)
The planets -- even Jupiter -- would have little effect on the projectiles since most of them would not come near enough to be affected, and the rest would only be deflected a bit. (Remember, they're passing by at greater than escape velocity. The deflection a body can provide depends on the projectile's velocity (the slower it's moving relative, the bigger the defection) and on the impact parameter (the closer the projectile passes the bigger the deflection.)
Hitting the Earth accidentally is hard. The Earth occupies .25(r/R)2 of a 2AU circle, where r is the Earth's radius and R is the Earth's orbital radius (the AU). That fraction is about 5*10-10. So less than one in a billion of the projectiles would hit Earth even if they were aimed to all pass through the ecliptic within 2AU of the Sun.
Finally, if they did hit the Earth we'd probably not notice them. A 100 metric ton slug of metal would be about 10 cubic meters if it's iron, less if it's something denser. That's a sphere less then ten feet in diameter. It would produce a nice bolide, but would come down pretty much intact, making a 50 meter crater with about a 4 kiloton explosion. Nothing you'd want to be next to, of course, but basically unnoticeable more than twenty miles away. Tunguska was close to 100 times bigger (though probably mostly ice) and its explosion was around four thousand times greater, and it was nearly missed. Had it hit water, it would have been missed.
1
+1 for the physics. Also may be worth mentioning re the descriptive text that by the time a 100 ton object (which is pretty small) moving at 2.5 km/s or more becomes visible to the naked eye, any consequences are going to become apparent in less than a second, not hours later.
– KerrAvon2055
2 hours ago
@KerrAvon2055 Excellent point! (I think your comment says all that needs to be said, though.)
– Mark Olson
2 hours ago
add a comment |
They are most likely to end up captured by Jupiter's gravity well first. If they manage to survive that long.
Jupiter is the second biggest object in our solar system after the Sun and possess a vast gravity well. There's a reason why it is used for slingshot maneuvers and accelerations by many of the probes sent throughout the system by the various space agencies. They even sent a solar probe to Jupiter to alter it's trajectory so it could fly by the poles of the sun.
2 AU is a little under the distance of the Asteroid Belt to the Sun, so they would definitely be in the gravitational influence of the Sun.
As for hitting Earth, which is, all things considered, an orbiting mote of dust around the Sun, it seems very improbable. The path of the flotsam would have to intersect Earth's orbit at a point in space and time that is also occupied by Earth at the same moment.
I do not know how to calculate or model the path of your piece of flotsam given the parameters given, but I would rather expect it to either fall into Jupiter or the Sun, or be sent into the depths of interstellar space, than hit anything else in the system.
1
Nearly downvoted. You do realize, I hope, that gravity wells are symmetric? That is, the incoming velocity equals the outgoing velocity? As Mark Olsen discussed in his answer, a body falling toward a large one from far away will end up far away. And as for "fall(ing) into Jupiter or the Sun", that is extremely unlikely, particularly since they are originally pointed at 2 AU out and 15 degrees above the plane of the ecliptic.
– WhatRoughBeast
41 mins ago
add a comment |
To be captured by the sun's gravity well means to end up orbiting the sun.
If a projectile is fired from outside the solar system, it may do a flyby around the sun. Its speed at any altitude (relative to the sun) will be greater than the escape velocity at those points.
Scientists believe this is exactly what the Oumuamua object did.
For the flotsam to be captured, it must be decelerated by a planet. Jupiter is the best candidate to do so, but the odds are against it. Even if the flotsam does a flyby by Jupiter, it is more likely to either hit the planet or be accelerated even further, causing it to exit the solar system earlier.
If it does get decelerated by a planet, the flotsam will be locked into an orbit that is unlikely to cross the Earth's own. It will cross Jupiter's orbit during its perihelion, which means it may crash into Jupiter eobs later, and it has an astronomical probability of having an orbit even more inclined relative to the Earth's than Pluto. All this makes an encounter with Earth very unlikely.
add a comment |
Muzzle velocity seems less important than projectile velocity as seen from Sol.
Give the weapons provided, it seems likely that fleets in motion, starting from bases also in motion, would need to come to (relative) near-rest with each other to have the fight at all...else their weapons would not score at all as the fleets flashed past each other in a fraction of a second and then spent weeks shedding velocity for another attacking run.
That point of relative near-rest-for-the-fight is still moving, from the perspective of everybody else in the galaxy. It orbits the galactic center, and it has a vector from the perspective of all the stars...including Sol.
And if that apparent vector, from Sol's perspective, is greater than about 7km/s at closest approach of 2AU, then Sol will probably not capture it at all. Flotsam just below that limit would likely go into comet-like hyperbolic orbits and may not return to the inner system for millenia.
Flotsam really slowly drifting toward Sol would be captured and become a minor menace to inner planets...but only during the two times each orbit that they intersect the ecliptic...and only until their crazy, unstable orbits dump them into Sol.
add a comment |
Short answer is a space weapon fired at any sort of realistic speed will never be captured by the Sun's gravity well. Consider that mere human technology has created nuclear pumped weapons like project Prometheus, which captured a small fraction of a nuclear explosion to fire a stream of pellets at 100km/sec. Changing some elements allows you to use similar equipment to make shaped charges, Explosively formed projectiles and even streams of star hot plasma moving at speeds measured in percentages of the speed of light. In short, your space armada would be sliced to pieces before they get a shot in using weapons with velocities of 2.5km/sec. In fact, orbital velocity around the Earth is already 7km/sec.
Realistic space weapons will be moving so fast that they will never be captured, while extremely slow moving bodies like you describe will likely not reach Earth at all, but either drift harmlessly past, or be captured by some of the Gas Giant planets in the outer Solar System.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "579"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f134589%2fhow-likely-is-the-flotsam-of-a-space-battle-to-be-captured-by-our-suns-gravity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
Virtually none of them would be captured and it's unlikely we'd notice anything whizzing past.
Basically, an object that falls into a gravity well from infinity (and a light year off is pretty close to that) will, unless it hits something while passing through, fall right back out again. By definition it picks up escape velocity as it falls in and loses it as it falls back out. So it passes through the solar system on a hyperbolic trajectory. And if the projectiles were moving at high speed before falling into the solar system, it will be a very flat hyperbola -- i.e., they'll hardly be deflected at all by the Sun's gravity.
If the slugs are aimed to pass through at 2AU, there's basically nothing there to hit and all they do is think to themselves, "Here comes the Sun...there goes the Sun...hello interstellar darkness..."
(I'm not quite sure what you mean by "to pass through our system 15 degrees above the ecliptic." It you mean they are aimed to pass well above the plane of the planetary orbits, then there's still less likely to hit anything or even be noticed.)
The planets -- even Jupiter -- would have little effect on the projectiles since most of them would not come near enough to be affected, and the rest would only be deflected a bit. (Remember, they're passing by at greater than escape velocity. The deflection a body can provide depends on the projectile's velocity (the slower it's moving relative, the bigger the defection) and on the impact parameter (the closer the projectile passes the bigger the deflection.)
Hitting the Earth accidentally is hard. The Earth occupies .25(r/R)2 of a 2AU circle, where r is the Earth's radius and R is the Earth's orbital radius (the AU). That fraction is about 5*10-10. So less than one in a billion of the projectiles would hit Earth even if they were aimed to all pass through the ecliptic within 2AU of the Sun.
Finally, if they did hit the Earth we'd probably not notice them. A 100 metric ton slug of metal would be about 10 cubic meters if it's iron, less if it's something denser. That's a sphere less then ten feet in diameter. It would produce a nice bolide, but would come down pretty much intact, making a 50 meter crater with about a 4 kiloton explosion. Nothing you'd want to be next to, of course, but basically unnoticeable more than twenty miles away. Tunguska was close to 100 times bigger (though probably mostly ice) and its explosion was around four thousand times greater, and it was nearly missed. Had it hit water, it would have been missed.
1
+1 for the physics. Also may be worth mentioning re the descriptive text that by the time a 100 ton object (which is pretty small) moving at 2.5 km/s or more becomes visible to the naked eye, any consequences are going to become apparent in less than a second, not hours later.
– KerrAvon2055
2 hours ago
@KerrAvon2055 Excellent point! (I think your comment says all that needs to be said, though.)
– Mark Olson
2 hours ago
add a comment |
Virtually none of them would be captured and it's unlikely we'd notice anything whizzing past.
Basically, an object that falls into a gravity well from infinity (and a light year off is pretty close to that) will, unless it hits something while passing through, fall right back out again. By definition it picks up escape velocity as it falls in and loses it as it falls back out. So it passes through the solar system on a hyperbolic trajectory. And if the projectiles were moving at high speed before falling into the solar system, it will be a very flat hyperbola -- i.e., they'll hardly be deflected at all by the Sun's gravity.
If the slugs are aimed to pass through at 2AU, there's basically nothing there to hit and all they do is think to themselves, "Here comes the Sun...there goes the Sun...hello interstellar darkness..."
(I'm not quite sure what you mean by "to pass through our system 15 degrees above the ecliptic." It you mean they are aimed to pass well above the plane of the planetary orbits, then there's still less likely to hit anything or even be noticed.)
The planets -- even Jupiter -- would have little effect on the projectiles since most of them would not come near enough to be affected, and the rest would only be deflected a bit. (Remember, they're passing by at greater than escape velocity. The deflection a body can provide depends on the projectile's velocity (the slower it's moving relative, the bigger the defection) and on the impact parameter (the closer the projectile passes the bigger the deflection.)
Hitting the Earth accidentally is hard. The Earth occupies .25(r/R)2 of a 2AU circle, where r is the Earth's radius and R is the Earth's orbital radius (the AU). That fraction is about 5*10-10. So less than one in a billion of the projectiles would hit Earth even if they were aimed to all pass through the ecliptic within 2AU of the Sun.
Finally, if they did hit the Earth we'd probably not notice them. A 100 metric ton slug of metal would be about 10 cubic meters if it's iron, less if it's something denser. That's a sphere less then ten feet in diameter. It would produce a nice bolide, but would come down pretty much intact, making a 50 meter crater with about a 4 kiloton explosion. Nothing you'd want to be next to, of course, but basically unnoticeable more than twenty miles away. Tunguska was close to 100 times bigger (though probably mostly ice) and its explosion was around four thousand times greater, and it was nearly missed. Had it hit water, it would have been missed.
1
+1 for the physics. Also may be worth mentioning re the descriptive text that by the time a 100 ton object (which is pretty small) moving at 2.5 km/s or more becomes visible to the naked eye, any consequences are going to become apparent in less than a second, not hours later.
– KerrAvon2055
2 hours ago
@KerrAvon2055 Excellent point! (I think your comment says all that needs to be said, though.)
– Mark Olson
2 hours ago
add a comment |
Virtually none of them would be captured and it's unlikely we'd notice anything whizzing past.
Basically, an object that falls into a gravity well from infinity (and a light year off is pretty close to that) will, unless it hits something while passing through, fall right back out again. By definition it picks up escape velocity as it falls in and loses it as it falls back out. So it passes through the solar system on a hyperbolic trajectory. And if the projectiles were moving at high speed before falling into the solar system, it will be a very flat hyperbola -- i.e., they'll hardly be deflected at all by the Sun's gravity.
If the slugs are aimed to pass through at 2AU, there's basically nothing there to hit and all they do is think to themselves, "Here comes the Sun...there goes the Sun...hello interstellar darkness..."
(I'm not quite sure what you mean by "to pass through our system 15 degrees above the ecliptic." It you mean they are aimed to pass well above the plane of the planetary orbits, then there's still less likely to hit anything or even be noticed.)
The planets -- even Jupiter -- would have little effect on the projectiles since most of them would not come near enough to be affected, and the rest would only be deflected a bit. (Remember, they're passing by at greater than escape velocity. The deflection a body can provide depends on the projectile's velocity (the slower it's moving relative, the bigger the defection) and on the impact parameter (the closer the projectile passes the bigger the deflection.)
Hitting the Earth accidentally is hard. The Earth occupies .25(r/R)2 of a 2AU circle, where r is the Earth's radius and R is the Earth's orbital radius (the AU). That fraction is about 5*10-10. So less than one in a billion of the projectiles would hit Earth even if they were aimed to all pass through the ecliptic within 2AU of the Sun.
Finally, if they did hit the Earth we'd probably not notice them. A 100 metric ton slug of metal would be about 10 cubic meters if it's iron, less if it's something denser. That's a sphere less then ten feet in diameter. It would produce a nice bolide, but would come down pretty much intact, making a 50 meter crater with about a 4 kiloton explosion. Nothing you'd want to be next to, of course, but basically unnoticeable more than twenty miles away. Tunguska was close to 100 times bigger (though probably mostly ice) and its explosion was around four thousand times greater, and it was nearly missed. Had it hit water, it would have been missed.
Virtually none of them would be captured and it's unlikely we'd notice anything whizzing past.
Basically, an object that falls into a gravity well from infinity (and a light year off is pretty close to that) will, unless it hits something while passing through, fall right back out again. By definition it picks up escape velocity as it falls in and loses it as it falls back out. So it passes through the solar system on a hyperbolic trajectory. And if the projectiles were moving at high speed before falling into the solar system, it will be a very flat hyperbola -- i.e., they'll hardly be deflected at all by the Sun's gravity.
If the slugs are aimed to pass through at 2AU, there's basically nothing there to hit and all they do is think to themselves, "Here comes the Sun...there goes the Sun...hello interstellar darkness..."
(I'm not quite sure what you mean by "to pass through our system 15 degrees above the ecliptic." It you mean they are aimed to pass well above the plane of the planetary orbits, then there's still less likely to hit anything or even be noticed.)
The planets -- even Jupiter -- would have little effect on the projectiles since most of them would not come near enough to be affected, and the rest would only be deflected a bit. (Remember, they're passing by at greater than escape velocity. The deflection a body can provide depends on the projectile's velocity (the slower it's moving relative, the bigger the defection) and on the impact parameter (the closer the projectile passes the bigger the deflection.)
Hitting the Earth accidentally is hard. The Earth occupies .25(r/R)2 of a 2AU circle, where r is the Earth's radius and R is the Earth's orbital radius (the AU). That fraction is about 5*10-10. So less than one in a billion of the projectiles would hit Earth even if they were aimed to all pass through the ecliptic within 2AU of the Sun.
Finally, if they did hit the Earth we'd probably not notice them. A 100 metric ton slug of metal would be about 10 cubic meters if it's iron, less if it's something denser. That's a sphere less then ten feet in diameter. It would produce a nice bolide, but would come down pretty much intact, making a 50 meter crater with about a 4 kiloton explosion. Nothing you'd want to be next to, of course, but basically unnoticeable more than twenty miles away. Tunguska was close to 100 times bigger (though probably mostly ice) and its explosion was around four thousand times greater, and it was nearly missed. Had it hit water, it would have been missed.
answered 3 hours ago
Mark Olson
9,53712140
9,53712140
1
+1 for the physics. Also may be worth mentioning re the descriptive text that by the time a 100 ton object (which is pretty small) moving at 2.5 km/s or more becomes visible to the naked eye, any consequences are going to become apparent in less than a second, not hours later.
– KerrAvon2055
2 hours ago
@KerrAvon2055 Excellent point! (I think your comment says all that needs to be said, though.)
– Mark Olson
2 hours ago
add a comment |
1
+1 for the physics. Also may be worth mentioning re the descriptive text that by the time a 100 ton object (which is pretty small) moving at 2.5 km/s or more becomes visible to the naked eye, any consequences are going to become apparent in less than a second, not hours later.
– KerrAvon2055
2 hours ago
@KerrAvon2055 Excellent point! (I think your comment says all that needs to be said, though.)
– Mark Olson
2 hours ago
1
1
+1 for the physics. Also may be worth mentioning re the descriptive text that by the time a 100 ton object (which is pretty small) moving at 2.5 km/s or more becomes visible to the naked eye, any consequences are going to become apparent in less than a second, not hours later.
– KerrAvon2055
2 hours ago
+1 for the physics. Also may be worth mentioning re the descriptive text that by the time a 100 ton object (which is pretty small) moving at 2.5 km/s or more becomes visible to the naked eye, any consequences are going to become apparent in less than a second, not hours later.
– KerrAvon2055
2 hours ago
@KerrAvon2055 Excellent point! (I think your comment says all that needs to be said, though.)
– Mark Olson
2 hours ago
@KerrAvon2055 Excellent point! (I think your comment says all that needs to be said, though.)
– Mark Olson
2 hours ago
add a comment |
They are most likely to end up captured by Jupiter's gravity well first. If they manage to survive that long.
Jupiter is the second biggest object in our solar system after the Sun and possess a vast gravity well. There's a reason why it is used for slingshot maneuvers and accelerations by many of the probes sent throughout the system by the various space agencies. They even sent a solar probe to Jupiter to alter it's trajectory so it could fly by the poles of the sun.
2 AU is a little under the distance of the Asteroid Belt to the Sun, so they would definitely be in the gravitational influence of the Sun.
As for hitting Earth, which is, all things considered, an orbiting mote of dust around the Sun, it seems very improbable. The path of the flotsam would have to intersect Earth's orbit at a point in space and time that is also occupied by Earth at the same moment.
I do not know how to calculate or model the path of your piece of flotsam given the parameters given, but I would rather expect it to either fall into Jupiter or the Sun, or be sent into the depths of interstellar space, than hit anything else in the system.
1
Nearly downvoted. You do realize, I hope, that gravity wells are symmetric? That is, the incoming velocity equals the outgoing velocity? As Mark Olsen discussed in his answer, a body falling toward a large one from far away will end up far away. And as for "fall(ing) into Jupiter or the Sun", that is extremely unlikely, particularly since they are originally pointed at 2 AU out and 15 degrees above the plane of the ecliptic.
– WhatRoughBeast
41 mins ago
add a comment |
They are most likely to end up captured by Jupiter's gravity well first. If they manage to survive that long.
Jupiter is the second biggest object in our solar system after the Sun and possess a vast gravity well. There's a reason why it is used for slingshot maneuvers and accelerations by many of the probes sent throughout the system by the various space agencies. They even sent a solar probe to Jupiter to alter it's trajectory so it could fly by the poles of the sun.
2 AU is a little under the distance of the Asteroid Belt to the Sun, so they would definitely be in the gravitational influence of the Sun.
As for hitting Earth, which is, all things considered, an orbiting mote of dust around the Sun, it seems very improbable. The path of the flotsam would have to intersect Earth's orbit at a point in space and time that is also occupied by Earth at the same moment.
I do not know how to calculate or model the path of your piece of flotsam given the parameters given, but I would rather expect it to either fall into Jupiter or the Sun, or be sent into the depths of interstellar space, than hit anything else in the system.
1
Nearly downvoted. You do realize, I hope, that gravity wells are symmetric? That is, the incoming velocity equals the outgoing velocity? As Mark Olsen discussed in his answer, a body falling toward a large one from far away will end up far away. And as for "fall(ing) into Jupiter or the Sun", that is extremely unlikely, particularly since they are originally pointed at 2 AU out and 15 degrees above the plane of the ecliptic.
– WhatRoughBeast
41 mins ago
add a comment |
They are most likely to end up captured by Jupiter's gravity well first. If they manage to survive that long.
Jupiter is the second biggest object in our solar system after the Sun and possess a vast gravity well. There's a reason why it is used for slingshot maneuvers and accelerations by many of the probes sent throughout the system by the various space agencies. They even sent a solar probe to Jupiter to alter it's trajectory so it could fly by the poles of the sun.
2 AU is a little under the distance of the Asteroid Belt to the Sun, so they would definitely be in the gravitational influence of the Sun.
As for hitting Earth, which is, all things considered, an orbiting mote of dust around the Sun, it seems very improbable. The path of the flotsam would have to intersect Earth's orbit at a point in space and time that is also occupied by Earth at the same moment.
I do not know how to calculate or model the path of your piece of flotsam given the parameters given, but I would rather expect it to either fall into Jupiter or the Sun, or be sent into the depths of interstellar space, than hit anything else in the system.
They are most likely to end up captured by Jupiter's gravity well first. If they manage to survive that long.
Jupiter is the second biggest object in our solar system after the Sun and possess a vast gravity well. There's a reason why it is used for slingshot maneuvers and accelerations by many of the probes sent throughout the system by the various space agencies. They even sent a solar probe to Jupiter to alter it's trajectory so it could fly by the poles of the sun.
2 AU is a little under the distance of the Asteroid Belt to the Sun, so they would definitely be in the gravitational influence of the Sun.
As for hitting Earth, which is, all things considered, an orbiting mote of dust around the Sun, it seems very improbable. The path of the flotsam would have to intersect Earth's orbit at a point in space and time that is also occupied by Earth at the same moment.
I do not know how to calculate or model the path of your piece of flotsam given the parameters given, but I would rather expect it to either fall into Jupiter or the Sun, or be sent into the depths of interstellar space, than hit anything else in the system.
answered 4 hours ago
Sava
1,2191319
1,2191319
1
Nearly downvoted. You do realize, I hope, that gravity wells are symmetric? That is, the incoming velocity equals the outgoing velocity? As Mark Olsen discussed in his answer, a body falling toward a large one from far away will end up far away. And as for "fall(ing) into Jupiter or the Sun", that is extremely unlikely, particularly since they are originally pointed at 2 AU out and 15 degrees above the plane of the ecliptic.
– WhatRoughBeast
41 mins ago
add a comment |
1
Nearly downvoted. You do realize, I hope, that gravity wells are symmetric? That is, the incoming velocity equals the outgoing velocity? As Mark Olsen discussed in his answer, a body falling toward a large one from far away will end up far away. And as for "fall(ing) into Jupiter or the Sun", that is extremely unlikely, particularly since they are originally pointed at 2 AU out and 15 degrees above the plane of the ecliptic.
– WhatRoughBeast
41 mins ago
1
1
Nearly downvoted. You do realize, I hope, that gravity wells are symmetric? That is, the incoming velocity equals the outgoing velocity? As Mark Olsen discussed in his answer, a body falling toward a large one from far away will end up far away. And as for "fall(ing) into Jupiter or the Sun", that is extremely unlikely, particularly since they are originally pointed at 2 AU out and 15 degrees above the plane of the ecliptic.
– WhatRoughBeast
41 mins ago
Nearly downvoted. You do realize, I hope, that gravity wells are symmetric? That is, the incoming velocity equals the outgoing velocity? As Mark Olsen discussed in his answer, a body falling toward a large one from far away will end up far away. And as for "fall(ing) into Jupiter or the Sun", that is extremely unlikely, particularly since they are originally pointed at 2 AU out and 15 degrees above the plane of the ecliptic.
– WhatRoughBeast
41 mins ago
add a comment |
To be captured by the sun's gravity well means to end up orbiting the sun.
If a projectile is fired from outside the solar system, it may do a flyby around the sun. Its speed at any altitude (relative to the sun) will be greater than the escape velocity at those points.
Scientists believe this is exactly what the Oumuamua object did.
For the flotsam to be captured, it must be decelerated by a planet. Jupiter is the best candidate to do so, but the odds are against it. Even if the flotsam does a flyby by Jupiter, it is more likely to either hit the planet or be accelerated even further, causing it to exit the solar system earlier.
If it does get decelerated by a planet, the flotsam will be locked into an orbit that is unlikely to cross the Earth's own. It will cross Jupiter's orbit during its perihelion, which means it may crash into Jupiter eobs later, and it has an astronomical probability of having an orbit even more inclined relative to the Earth's than Pluto. All this makes an encounter with Earth very unlikely.
add a comment |
To be captured by the sun's gravity well means to end up orbiting the sun.
If a projectile is fired from outside the solar system, it may do a flyby around the sun. Its speed at any altitude (relative to the sun) will be greater than the escape velocity at those points.
Scientists believe this is exactly what the Oumuamua object did.
For the flotsam to be captured, it must be decelerated by a planet. Jupiter is the best candidate to do so, but the odds are against it. Even if the flotsam does a flyby by Jupiter, it is more likely to either hit the planet or be accelerated even further, causing it to exit the solar system earlier.
If it does get decelerated by a planet, the flotsam will be locked into an orbit that is unlikely to cross the Earth's own. It will cross Jupiter's orbit during its perihelion, which means it may crash into Jupiter eobs later, and it has an astronomical probability of having an orbit even more inclined relative to the Earth's than Pluto. All this makes an encounter with Earth very unlikely.
add a comment |
To be captured by the sun's gravity well means to end up orbiting the sun.
If a projectile is fired from outside the solar system, it may do a flyby around the sun. Its speed at any altitude (relative to the sun) will be greater than the escape velocity at those points.
Scientists believe this is exactly what the Oumuamua object did.
For the flotsam to be captured, it must be decelerated by a planet. Jupiter is the best candidate to do so, but the odds are against it. Even if the flotsam does a flyby by Jupiter, it is more likely to either hit the planet or be accelerated even further, causing it to exit the solar system earlier.
If it does get decelerated by a planet, the flotsam will be locked into an orbit that is unlikely to cross the Earth's own. It will cross Jupiter's orbit during its perihelion, which means it may crash into Jupiter eobs later, and it has an astronomical probability of having an orbit even more inclined relative to the Earth's than Pluto. All this makes an encounter with Earth very unlikely.
To be captured by the sun's gravity well means to end up orbiting the sun.
If a projectile is fired from outside the solar system, it may do a flyby around the sun. Its speed at any altitude (relative to the sun) will be greater than the escape velocity at those points.
Scientists believe this is exactly what the Oumuamua object did.
For the flotsam to be captured, it must be decelerated by a planet. Jupiter is the best candidate to do so, but the odds are against it. Even if the flotsam does a flyby by Jupiter, it is more likely to either hit the planet or be accelerated even further, causing it to exit the solar system earlier.
If it does get decelerated by a planet, the flotsam will be locked into an orbit that is unlikely to cross the Earth's own. It will cross Jupiter's orbit during its perihelion, which means it may crash into Jupiter eobs later, and it has an astronomical probability of having an orbit even more inclined relative to the Earth's than Pluto. All this makes an encounter with Earth very unlikely.
edited 34 mins ago
L.Dutch♦
75.2k24180366
75.2k24180366
answered 37 mins ago
Renan
42.3k1198217
42.3k1198217
add a comment |
add a comment |
Muzzle velocity seems less important than projectile velocity as seen from Sol.
Give the weapons provided, it seems likely that fleets in motion, starting from bases also in motion, would need to come to (relative) near-rest with each other to have the fight at all...else their weapons would not score at all as the fleets flashed past each other in a fraction of a second and then spent weeks shedding velocity for another attacking run.
That point of relative near-rest-for-the-fight is still moving, from the perspective of everybody else in the galaxy. It orbits the galactic center, and it has a vector from the perspective of all the stars...including Sol.
And if that apparent vector, from Sol's perspective, is greater than about 7km/s at closest approach of 2AU, then Sol will probably not capture it at all. Flotsam just below that limit would likely go into comet-like hyperbolic orbits and may not return to the inner system for millenia.
Flotsam really slowly drifting toward Sol would be captured and become a minor menace to inner planets...but only during the two times each orbit that they intersect the ecliptic...and only until their crazy, unstable orbits dump them into Sol.
add a comment |
Muzzle velocity seems less important than projectile velocity as seen from Sol.
Give the weapons provided, it seems likely that fleets in motion, starting from bases also in motion, would need to come to (relative) near-rest with each other to have the fight at all...else their weapons would not score at all as the fleets flashed past each other in a fraction of a second and then spent weeks shedding velocity for another attacking run.
That point of relative near-rest-for-the-fight is still moving, from the perspective of everybody else in the galaxy. It orbits the galactic center, and it has a vector from the perspective of all the stars...including Sol.
And if that apparent vector, from Sol's perspective, is greater than about 7km/s at closest approach of 2AU, then Sol will probably not capture it at all. Flotsam just below that limit would likely go into comet-like hyperbolic orbits and may not return to the inner system for millenia.
Flotsam really slowly drifting toward Sol would be captured and become a minor menace to inner planets...but only during the two times each orbit that they intersect the ecliptic...and only until their crazy, unstable orbits dump them into Sol.
add a comment |
Muzzle velocity seems less important than projectile velocity as seen from Sol.
Give the weapons provided, it seems likely that fleets in motion, starting from bases also in motion, would need to come to (relative) near-rest with each other to have the fight at all...else their weapons would not score at all as the fleets flashed past each other in a fraction of a second and then spent weeks shedding velocity for another attacking run.
That point of relative near-rest-for-the-fight is still moving, from the perspective of everybody else in the galaxy. It orbits the galactic center, and it has a vector from the perspective of all the stars...including Sol.
And if that apparent vector, from Sol's perspective, is greater than about 7km/s at closest approach of 2AU, then Sol will probably not capture it at all. Flotsam just below that limit would likely go into comet-like hyperbolic orbits and may not return to the inner system for millenia.
Flotsam really slowly drifting toward Sol would be captured and become a minor menace to inner planets...but only during the two times each orbit that they intersect the ecliptic...and only until their crazy, unstable orbits dump them into Sol.
Muzzle velocity seems less important than projectile velocity as seen from Sol.
Give the weapons provided, it seems likely that fleets in motion, starting from bases also in motion, would need to come to (relative) near-rest with each other to have the fight at all...else their weapons would not score at all as the fleets flashed past each other in a fraction of a second and then spent weeks shedding velocity for another attacking run.
That point of relative near-rest-for-the-fight is still moving, from the perspective of everybody else in the galaxy. It orbits the galactic center, and it has a vector from the perspective of all the stars...including Sol.
And if that apparent vector, from Sol's perspective, is greater than about 7km/s at closest approach of 2AU, then Sol will probably not capture it at all. Flotsam just below that limit would likely go into comet-like hyperbolic orbits and may not return to the inner system for millenia.
Flotsam really slowly drifting toward Sol would be captured and become a minor menace to inner planets...but only during the two times each orbit that they intersect the ecliptic...and only until their crazy, unstable orbits dump them into Sol.
answered 2 hours ago
user535733
6,8341531
6,8341531
add a comment |
add a comment |
Short answer is a space weapon fired at any sort of realistic speed will never be captured by the Sun's gravity well. Consider that mere human technology has created nuclear pumped weapons like project Prometheus, which captured a small fraction of a nuclear explosion to fire a stream of pellets at 100km/sec. Changing some elements allows you to use similar equipment to make shaped charges, Explosively formed projectiles and even streams of star hot plasma moving at speeds measured in percentages of the speed of light. In short, your space armada would be sliced to pieces before they get a shot in using weapons with velocities of 2.5km/sec. In fact, orbital velocity around the Earth is already 7km/sec.
Realistic space weapons will be moving so fast that they will never be captured, while extremely slow moving bodies like you describe will likely not reach Earth at all, but either drift harmlessly past, or be captured by some of the Gas Giant planets in the outer Solar System.
add a comment |
Short answer is a space weapon fired at any sort of realistic speed will never be captured by the Sun's gravity well. Consider that mere human technology has created nuclear pumped weapons like project Prometheus, which captured a small fraction of a nuclear explosion to fire a stream of pellets at 100km/sec. Changing some elements allows you to use similar equipment to make shaped charges, Explosively formed projectiles and even streams of star hot plasma moving at speeds measured in percentages of the speed of light. In short, your space armada would be sliced to pieces before they get a shot in using weapons with velocities of 2.5km/sec. In fact, orbital velocity around the Earth is already 7km/sec.
Realistic space weapons will be moving so fast that they will never be captured, while extremely slow moving bodies like you describe will likely not reach Earth at all, but either drift harmlessly past, or be captured by some of the Gas Giant planets in the outer Solar System.
add a comment |
Short answer is a space weapon fired at any sort of realistic speed will never be captured by the Sun's gravity well. Consider that mere human technology has created nuclear pumped weapons like project Prometheus, which captured a small fraction of a nuclear explosion to fire a stream of pellets at 100km/sec. Changing some elements allows you to use similar equipment to make shaped charges, Explosively formed projectiles and even streams of star hot plasma moving at speeds measured in percentages of the speed of light. In short, your space armada would be sliced to pieces before they get a shot in using weapons with velocities of 2.5km/sec. In fact, orbital velocity around the Earth is already 7km/sec.
Realistic space weapons will be moving so fast that they will never be captured, while extremely slow moving bodies like you describe will likely not reach Earth at all, but either drift harmlessly past, or be captured by some of the Gas Giant planets in the outer Solar System.
Short answer is a space weapon fired at any sort of realistic speed will never be captured by the Sun's gravity well. Consider that mere human technology has created nuclear pumped weapons like project Prometheus, which captured a small fraction of a nuclear explosion to fire a stream of pellets at 100km/sec. Changing some elements allows you to use similar equipment to make shaped charges, Explosively formed projectiles and even streams of star hot plasma moving at speeds measured in percentages of the speed of light. In short, your space armada would be sliced to pieces before they get a shot in using weapons with velocities of 2.5km/sec. In fact, orbital velocity around the Earth is already 7km/sec.
Realistic space weapons will be moving so fast that they will never be captured, while extremely slow moving bodies like you describe will likely not reach Earth at all, but either drift harmlessly past, or be captured by some of the Gas Giant planets in the outer Solar System.
answered 2 hours ago
Thucydides
80.9k678240
80.9k678240
add a comment |
add a comment |
Thanks for contributing an answer to Worldbuilding Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f134589%2fhow-likely-is-the-flotsam-of-a-space-battle-to-be-captured-by-our-suns-gravity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
"15 degrees above the ecliptic" does not actually mean anything. Please rephrase this. Do you mean that at closest approach to the sun it will appear to be 15 degrees above or below the plane of the ecliptic when observed from earth? If so, calculate the actual distance involved, and then try to reconcile it with your 2 AU number.
– WhatRoughBeast
38 mins ago