Java Magic square program












0














Here is my improved version of my Magic square program from this topic:
Speed up Magic square program.
I also added a few comments.



Any help for improvments would be really appreciated.



import java.util.HashSet;
import java.util.Scanner;

public class MagicSquare {

private int square;
private int row_sum;
private int col_sum;
private int magicNumber;
private int size;
private boolean usedNumbers;
private int solutions=0;
private int squareSize;

public MagicSquare(int size) {
this.size = size;
this.usedNumbers = new boolean[size * size + 1];
this.square = new int[size * size];
this.row_sum = new int[size];
this.col_sum = new int[size];
this.magicNumber = ((size * size * size + size) / 2);
this.squareSize = size * size;
}

private boolean solve(int x) {

if (x == squareSize && checkDiagonals()) {

for (int i = 0; i < size; i++) {
if (row_sum[i] != magicNumber || col_sum[i] != magicNumber) {
return false; // no solution, backtrack
}
}

solutions++;
System.out.println("Solution: "+solutions);
printSquare();
return false; // serach for next solution
}
// the 1d square is mapped to 2d square
HashSet<Integer> validNumbers = new HashSet<Integer>(); // all valid Numbers from one position

if(x%size == size-1 && magicNumber-row_sum[(x/size)] <= squareSize &&
usedNumbers[magicNumber-row_sum[x/size]] == false) {
validNumbers.add(magicNumber-row_sum[(x/size)]); // All values ​​in a row, except for the last one were set
}

if(x/size == size-1 && magicNumber-col_sum[(x%size)] <= squareSize && //
usedNumbers[magicNumber-col_sum[x%size]] == false) {
validNumbers.add(magicNumber-col_sum[x%size]); // // All values ​​in a col, except for the last one were set
}

if(x%size != size-1 && x/size != size-1) { // for all other positions
for(int i=1; i<usedNumbers.length; i++) {
if (usedNumbers[i]== false) validNumbers.add(i);
}
}

if(validNumbers.size()==0) {
return false; // no valid numbers, backtrack
}

for (int v : validNumbers) {

row_sum[x/size] += v;
col_sum[x%size] += v;

if (row_sum[x/size] <= magicNumber && col_sum[x%size] <= magicNumber) {

square[x] = v;
usedNumbers[v] = true;

if (solve(x + 1) == true) {
return true;
}

usedNumbers[v] = false;
square[x] = 0;
}
row_sum[x/size] -= v;
col_sum[x%size] -= v;

}
return false;
}

private boolean checkDiagonals() {

int diagonal1 = 0;
int diagonal2 = 0;

for(int i=0; i<squareSize; i=i+size+1) {
diagonal1 = diagonal1 + square[i];
}

for(int i=size-1; i<squareSize-size+1; i = i+size-1) {
diagonal2 = diagonal2 + square[i];
}

return diagonal1==magicNumber && diagonal2==magicNumber;
}

private void printSquare() {

for (int i = 0; i < squareSize; i++) {

if(i%size ==0) {
System.out.println();
}
System.out.print(square[i] + " ");
}
System.out.println();
}

public static void main(String args) {

try {

Scanner sc = new Scanner(System.in);
int size = sc.nextInt();
MagicSquare m = new MagicSquare(size);
sc.close();

long start = System.currentTimeMillis();
m.solve(0);
long duration = System.currentTimeMillis() - start;

System.out.println("Runtime in ms : " + duration+" = "+duration/1000 + "sec");
System.out.println("There are "+m.solutions+" solutions with mirroring");

} catch (Exception ex) {
ex.printStackTrace();
}

}
}









share|improve this question





























    0














    Here is my improved version of my Magic square program from this topic:
    Speed up Magic square program.
    I also added a few comments.



    Any help for improvments would be really appreciated.



    import java.util.HashSet;
    import java.util.Scanner;

    public class MagicSquare {

    private int square;
    private int row_sum;
    private int col_sum;
    private int magicNumber;
    private int size;
    private boolean usedNumbers;
    private int solutions=0;
    private int squareSize;

    public MagicSquare(int size) {
    this.size = size;
    this.usedNumbers = new boolean[size * size + 1];
    this.square = new int[size * size];
    this.row_sum = new int[size];
    this.col_sum = new int[size];
    this.magicNumber = ((size * size * size + size) / 2);
    this.squareSize = size * size;
    }

    private boolean solve(int x) {

    if (x == squareSize && checkDiagonals()) {

    for (int i = 0; i < size; i++) {
    if (row_sum[i] != magicNumber || col_sum[i] != magicNumber) {
    return false; // no solution, backtrack
    }
    }

    solutions++;
    System.out.println("Solution: "+solutions);
    printSquare();
    return false; // serach for next solution
    }
    // the 1d square is mapped to 2d square
    HashSet<Integer> validNumbers = new HashSet<Integer>(); // all valid Numbers from one position

    if(x%size == size-1 && magicNumber-row_sum[(x/size)] <= squareSize &&
    usedNumbers[magicNumber-row_sum[x/size]] == false) {
    validNumbers.add(magicNumber-row_sum[(x/size)]); // All values ​​in a row, except for the last one were set
    }

    if(x/size == size-1 && magicNumber-col_sum[(x%size)] <= squareSize && //
    usedNumbers[magicNumber-col_sum[x%size]] == false) {
    validNumbers.add(magicNumber-col_sum[x%size]); // // All values ​​in a col, except for the last one were set
    }

    if(x%size != size-1 && x/size != size-1) { // for all other positions
    for(int i=1; i<usedNumbers.length; i++) {
    if (usedNumbers[i]== false) validNumbers.add(i);
    }
    }

    if(validNumbers.size()==0) {
    return false; // no valid numbers, backtrack
    }

    for (int v : validNumbers) {

    row_sum[x/size] += v;
    col_sum[x%size] += v;

    if (row_sum[x/size] <= magicNumber && col_sum[x%size] <= magicNumber) {

    square[x] = v;
    usedNumbers[v] = true;

    if (solve(x + 1) == true) {
    return true;
    }

    usedNumbers[v] = false;
    square[x] = 0;
    }
    row_sum[x/size] -= v;
    col_sum[x%size] -= v;

    }
    return false;
    }

    private boolean checkDiagonals() {

    int diagonal1 = 0;
    int diagonal2 = 0;

    for(int i=0; i<squareSize; i=i+size+1) {
    diagonal1 = diagonal1 + square[i];
    }

    for(int i=size-1; i<squareSize-size+1; i = i+size-1) {
    diagonal2 = diagonal2 + square[i];
    }

    return diagonal1==magicNumber && diagonal2==magicNumber;
    }

    private void printSquare() {

    for (int i = 0; i < squareSize; i++) {

    if(i%size ==0) {
    System.out.println();
    }
    System.out.print(square[i] + " ");
    }
    System.out.println();
    }

    public static void main(String args) {

    try {

    Scanner sc = new Scanner(System.in);
    int size = sc.nextInt();
    MagicSquare m = new MagicSquare(size);
    sc.close();

    long start = System.currentTimeMillis();
    m.solve(0);
    long duration = System.currentTimeMillis() - start;

    System.out.println("Runtime in ms : " + duration+" = "+duration/1000 + "sec");
    System.out.println("There are "+m.solutions+" solutions with mirroring");

    } catch (Exception ex) {
    ex.printStackTrace();
    }

    }
    }









    share|improve this question



























      0












      0








      0







      Here is my improved version of my Magic square program from this topic:
      Speed up Magic square program.
      I also added a few comments.



      Any help for improvments would be really appreciated.



      import java.util.HashSet;
      import java.util.Scanner;

      public class MagicSquare {

      private int square;
      private int row_sum;
      private int col_sum;
      private int magicNumber;
      private int size;
      private boolean usedNumbers;
      private int solutions=0;
      private int squareSize;

      public MagicSquare(int size) {
      this.size = size;
      this.usedNumbers = new boolean[size * size + 1];
      this.square = new int[size * size];
      this.row_sum = new int[size];
      this.col_sum = new int[size];
      this.magicNumber = ((size * size * size + size) / 2);
      this.squareSize = size * size;
      }

      private boolean solve(int x) {

      if (x == squareSize && checkDiagonals()) {

      for (int i = 0; i < size; i++) {
      if (row_sum[i] != magicNumber || col_sum[i] != magicNumber) {
      return false; // no solution, backtrack
      }
      }

      solutions++;
      System.out.println("Solution: "+solutions);
      printSquare();
      return false; // serach for next solution
      }
      // the 1d square is mapped to 2d square
      HashSet<Integer> validNumbers = new HashSet<Integer>(); // all valid Numbers from one position

      if(x%size == size-1 && magicNumber-row_sum[(x/size)] <= squareSize &&
      usedNumbers[magicNumber-row_sum[x/size]] == false) {
      validNumbers.add(magicNumber-row_sum[(x/size)]); // All values ​​in a row, except for the last one were set
      }

      if(x/size == size-1 && magicNumber-col_sum[(x%size)] <= squareSize && //
      usedNumbers[magicNumber-col_sum[x%size]] == false) {
      validNumbers.add(magicNumber-col_sum[x%size]); // // All values ​​in a col, except for the last one were set
      }

      if(x%size != size-1 && x/size != size-1) { // for all other positions
      for(int i=1; i<usedNumbers.length; i++) {
      if (usedNumbers[i]== false) validNumbers.add(i);
      }
      }

      if(validNumbers.size()==0) {
      return false; // no valid numbers, backtrack
      }

      for (int v : validNumbers) {

      row_sum[x/size] += v;
      col_sum[x%size] += v;

      if (row_sum[x/size] <= magicNumber && col_sum[x%size] <= magicNumber) {

      square[x] = v;
      usedNumbers[v] = true;

      if (solve(x + 1) == true) {
      return true;
      }

      usedNumbers[v] = false;
      square[x] = 0;
      }
      row_sum[x/size] -= v;
      col_sum[x%size] -= v;

      }
      return false;
      }

      private boolean checkDiagonals() {

      int diagonal1 = 0;
      int diagonal2 = 0;

      for(int i=0; i<squareSize; i=i+size+1) {
      diagonal1 = diagonal1 + square[i];
      }

      for(int i=size-1; i<squareSize-size+1; i = i+size-1) {
      diagonal2 = diagonal2 + square[i];
      }

      return diagonal1==magicNumber && diagonal2==magicNumber;
      }

      private void printSquare() {

      for (int i = 0; i < squareSize; i++) {

      if(i%size ==0) {
      System.out.println();
      }
      System.out.print(square[i] + " ");
      }
      System.out.println();
      }

      public static void main(String args) {

      try {

      Scanner sc = new Scanner(System.in);
      int size = sc.nextInt();
      MagicSquare m = new MagicSquare(size);
      sc.close();

      long start = System.currentTimeMillis();
      m.solve(0);
      long duration = System.currentTimeMillis() - start;

      System.out.println("Runtime in ms : " + duration+" = "+duration/1000 + "sec");
      System.out.println("There are "+m.solutions+" solutions with mirroring");

      } catch (Exception ex) {
      ex.printStackTrace();
      }

      }
      }









      share|improve this question















      Here is my improved version of my Magic square program from this topic:
      Speed up Magic square program.
      I also added a few comments.



      Any help for improvments would be really appreciated.



      import java.util.HashSet;
      import java.util.Scanner;

      public class MagicSquare {

      private int square;
      private int row_sum;
      private int col_sum;
      private int magicNumber;
      private int size;
      private boolean usedNumbers;
      private int solutions=0;
      private int squareSize;

      public MagicSquare(int size) {
      this.size = size;
      this.usedNumbers = new boolean[size * size + 1];
      this.square = new int[size * size];
      this.row_sum = new int[size];
      this.col_sum = new int[size];
      this.magicNumber = ((size * size * size + size) / 2);
      this.squareSize = size * size;
      }

      private boolean solve(int x) {

      if (x == squareSize && checkDiagonals()) {

      for (int i = 0; i < size; i++) {
      if (row_sum[i] != magicNumber || col_sum[i] != magicNumber) {
      return false; // no solution, backtrack
      }
      }

      solutions++;
      System.out.println("Solution: "+solutions);
      printSquare();
      return false; // serach for next solution
      }
      // the 1d square is mapped to 2d square
      HashSet<Integer> validNumbers = new HashSet<Integer>(); // all valid Numbers from one position

      if(x%size == size-1 && magicNumber-row_sum[(x/size)] <= squareSize &&
      usedNumbers[magicNumber-row_sum[x/size]] == false) {
      validNumbers.add(magicNumber-row_sum[(x/size)]); // All values ​​in a row, except for the last one were set
      }

      if(x/size == size-1 && magicNumber-col_sum[(x%size)] <= squareSize && //
      usedNumbers[magicNumber-col_sum[x%size]] == false) {
      validNumbers.add(magicNumber-col_sum[x%size]); // // All values ​​in a col, except for the last one were set
      }

      if(x%size != size-1 && x/size != size-1) { // for all other positions
      for(int i=1; i<usedNumbers.length; i++) {
      if (usedNumbers[i]== false) validNumbers.add(i);
      }
      }

      if(validNumbers.size()==0) {
      return false; // no valid numbers, backtrack
      }

      for (int v : validNumbers) {

      row_sum[x/size] += v;
      col_sum[x%size] += v;

      if (row_sum[x/size] <= magicNumber && col_sum[x%size] <= magicNumber) {

      square[x] = v;
      usedNumbers[v] = true;

      if (solve(x + 1) == true) {
      return true;
      }

      usedNumbers[v] = false;
      square[x] = 0;
      }
      row_sum[x/size] -= v;
      col_sum[x%size] -= v;

      }
      return false;
      }

      private boolean checkDiagonals() {

      int diagonal1 = 0;
      int diagonal2 = 0;

      for(int i=0; i<squareSize; i=i+size+1) {
      diagonal1 = diagonal1 + square[i];
      }

      for(int i=size-1; i<squareSize-size+1; i = i+size-1) {
      diagonal2 = diagonal2 + square[i];
      }

      return diagonal1==magicNumber && diagonal2==magicNumber;
      }

      private void printSquare() {

      for (int i = 0; i < squareSize; i++) {

      if(i%size ==0) {
      System.out.println();
      }
      System.out.print(square[i] + " ");
      }
      System.out.println();
      }

      public static void main(String args) {

      try {

      Scanner sc = new Scanner(System.in);
      int size = sc.nextInt();
      MagicSquare m = new MagicSquare(size);
      sc.close();

      long start = System.currentTimeMillis();
      m.solve(0);
      long duration = System.currentTimeMillis() - start;

      System.out.println("Runtime in ms : " + duration+" = "+duration/1000 + "sec");
      System.out.println("There are "+m.solutions+" solutions with mirroring");

      } catch (Exception ex) {
      ex.printStackTrace();
      }

      }
      }






      java performance recursion backtracking






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 1 hour ago









      Sᴀᴍ Onᴇᴌᴀ

      8,34261853




      8,34261853










      asked 1 hour ago









      Marten

      1386




      1386



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "196"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210648%2fjava-magic-square-program%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Code Review Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210648%2fjava-magic-square-program%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Morgemoulin

          Scott Moir

          Souastre