Simple way to highlight streams in basins of attraction in StreamDensityPlot
In making a figure to answer this question, I wanted to highlight streams that start or end at the critical points, $(0,0)$ and $(2,2)$.
One can define StreamPoints or VectorPoints, but that doesn't create the streams both to and away from a critical point. The only other way seems to be rather awkward: making a ParametricPlot and superimposing it on the StreamDensityPlot.
Question: How can I most simply alter the below code to show (in red) all streams originating from the local optimum at $(2,2)$ and (in green) all streams leaving or terminating at the saddle point at $(0,0)$? (Some stream lines will be "both"... i.e., leave $(2,2)$ and terminate at $(0,0)$.)
StreamDensityPlot[{{3 x^2 - 6 y, 3 y^2 - 6 x}, x^3 + y^3 - 6 x y},
{x, -5, 5}, {y, -5, 5},
StreamPoints -> {{{{1, 0}, Red}, {{-1, -1}, Green}, Automatic}},
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green,
Point[{0, 0}]}]
This is a partial solution:
myStreams =
Table[{{2, 2} + 2 {Cos[θ], Sin[θ]}, Red}, {θ, 0, 2 π, .3}];
StreamDensityPlot[{{3 x^2 - 6 y, 3 y^2 - 6 x},
x^3 + y^3 - 6 x y},
{x, -5, 5}, {y, -5, 5},
StreamPoints ->
Flatten[{Join[myStreams, {{{-.2, -.2}, Green}}], Automatic}, 1],
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green, Point[{0, 0}]}]
streams highlight
add a comment |
In making a figure to answer this question, I wanted to highlight streams that start or end at the critical points, $(0,0)$ and $(2,2)$.
One can define StreamPoints or VectorPoints, but that doesn't create the streams both to and away from a critical point. The only other way seems to be rather awkward: making a ParametricPlot and superimposing it on the StreamDensityPlot.
Question: How can I most simply alter the below code to show (in red) all streams originating from the local optimum at $(2,2)$ and (in green) all streams leaving or terminating at the saddle point at $(0,0)$? (Some stream lines will be "both"... i.e., leave $(2,2)$ and terminate at $(0,0)$.)
StreamDensityPlot[{{3 x^2 - 6 y, 3 y^2 - 6 x}, x^3 + y^3 - 6 x y},
{x, -5, 5}, {y, -5, 5},
StreamPoints -> {{{{1, 0}, Red}, {{-1, -1}, Green}, Automatic}},
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green,
Point[{0, 0}]}]
This is a partial solution:
myStreams =
Table[{{2, 2} + 2 {Cos[θ], Sin[θ]}, Red}, {θ, 0, 2 π, .3}];
StreamDensityPlot[{{3 x^2 - 6 y, 3 y^2 - 6 x},
x^3 + y^3 - 6 x y},
{x, -5, 5}, {y, -5, 5},
StreamPoints ->
Flatten[{Join[myStreams, {{{-.2, -.2}, Green}}], Automatic}, 1],
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green, Point[{0, 0}]}]
streams highlight
For the green streams going in and out of the saddle point, do you just want the stable and unstable manifolds (4 lines -- in from 2 sides and out from 2 others)?
– Chris K
5 hours ago
Four lines would suffice.
– David G. Stork
5 hours ago
add a comment |
In making a figure to answer this question, I wanted to highlight streams that start or end at the critical points, $(0,0)$ and $(2,2)$.
One can define StreamPoints or VectorPoints, but that doesn't create the streams both to and away from a critical point. The only other way seems to be rather awkward: making a ParametricPlot and superimposing it on the StreamDensityPlot.
Question: How can I most simply alter the below code to show (in red) all streams originating from the local optimum at $(2,2)$ and (in green) all streams leaving or terminating at the saddle point at $(0,0)$? (Some stream lines will be "both"... i.e., leave $(2,2)$ and terminate at $(0,0)$.)
StreamDensityPlot[{{3 x^2 - 6 y, 3 y^2 - 6 x}, x^3 + y^3 - 6 x y},
{x, -5, 5}, {y, -5, 5},
StreamPoints -> {{{{1, 0}, Red}, {{-1, -1}, Green}, Automatic}},
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green,
Point[{0, 0}]}]
This is a partial solution:
myStreams =
Table[{{2, 2} + 2 {Cos[θ], Sin[θ]}, Red}, {θ, 0, 2 π, .3}];
StreamDensityPlot[{{3 x^2 - 6 y, 3 y^2 - 6 x},
x^3 + y^3 - 6 x y},
{x, -5, 5}, {y, -5, 5},
StreamPoints ->
Flatten[{Join[myStreams, {{{-.2, -.2}, Green}}], Automatic}, 1],
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green, Point[{0, 0}]}]
streams highlight
In making a figure to answer this question, I wanted to highlight streams that start or end at the critical points, $(0,0)$ and $(2,2)$.
One can define StreamPoints or VectorPoints, but that doesn't create the streams both to and away from a critical point. The only other way seems to be rather awkward: making a ParametricPlot and superimposing it on the StreamDensityPlot.
Question: How can I most simply alter the below code to show (in red) all streams originating from the local optimum at $(2,2)$ and (in green) all streams leaving or terminating at the saddle point at $(0,0)$? (Some stream lines will be "both"... i.e., leave $(2,2)$ and terminate at $(0,0)$.)
StreamDensityPlot[{{3 x^2 - 6 y, 3 y^2 - 6 x}, x^3 + y^3 - 6 x y},
{x, -5, 5}, {y, -5, 5},
StreamPoints -> {{{{1, 0}, Red}, {{-1, -1}, Green}, Automatic}},
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green,
Point[{0, 0}]}]
This is a partial solution:
myStreams =
Table[{{2, 2} + 2 {Cos[θ], Sin[θ]}, Red}, {θ, 0, 2 π, .3}];
StreamDensityPlot[{{3 x^2 - 6 y, 3 y^2 - 6 x},
x^3 + y^3 - 6 x y},
{x, -5, 5}, {y, -5, 5},
StreamPoints ->
Flatten[{Join[myStreams, {{{-.2, -.2}, Green}}], Automatic}, 1],
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green, Point[{0, 0}]}]
streams highlight
streams highlight
edited 6 hours ago
asked 7 hours ago
David G. Stork
23k22051
23k22051
For the green streams going in and out of the saddle point, do you just want the stable and unstable manifolds (4 lines -- in from 2 sides and out from 2 others)?
– Chris K
5 hours ago
Four lines would suffice.
– David G. Stork
5 hours ago
add a comment |
For the green streams going in and out of the saddle point, do you just want the stable and unstable manifolds (4 lines -- in from 2 sides and out from 2 others)?
– Chris K
5 hours ago
Four lines would suffice.
– David G. Stork
5 hours ago
For the green streams going in and out of the saddle point, do you just want the stable and unstable manifolds (4 lines -- in from 2 sides and out from 2 others)?
– Chris K
5 hours ago
For the green streams going in and out of the saddle point, do you just want the stable and unstable manifolds (4 lines -- in from 2 sides and out from 2 others)?
– Chris K
5 hours ago
Four lines would suffice.
– David G. Stork
5 hours ago
Four lines would suffice.
– David G. Stork
5 hours ago
add a comment |
2 Answers
2
active
oldest
votes
We could get the positions of the tips of the arrows from the graphics itself, integrate to see where test points at those positions end up, and then color the arrows accordingly. Here is the code for that:
plot = StreamDensityPlot[
{{3 x^2 - 6 y, 3 y^2 - 6 x}, x^3 + y^3 - 6 x y},
{x, -5, 5}, {y, -5, 5},
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green, Point[{0, 0}]}
]
arrows = Cases[plot, _Arrow, Infinity];
tips = arrows[[All, 1, -1]];
headedIntoBasin = intoBasinQ[{0, 0}, #] & /@ tips;
headedFromBasin = fromBasinQ[{2, 2}, #] & /@ tips;
both = Thread[headedIntoBasin && headedFromBasin];
plot /. Join[
# -> {Yellow, #} & /@ Pick[arrows, both],
# -> {Green, #} & /@ Pick[arrows, headedIntoBasin],
# -> {Red, #} & /@ Pick[arrows, headedFromBasin]
]
The functions intoBasinQ
and fromBasinQ
are verbose so I leave them for last, although they are quite simple, they only look complicated:
intoBasinQ[basin_, {x0_, y0_}] := Module[{xfun, yfun},
{xfun, yfun} = Quiet@NDSolveValue[{
x'[t] == 3 x[t]^2 - 6 y[t],
y'[t] == 3 y[t]^2 - 6 x[t],
x[0] == x0,
y[0] == y0,
WhenEvent[
Norm[basin - {x[t], y[t]}] < 0.1,
"StopIntegration",
"LocationMethod" -> "StepEnd"
]
}, {x, y}, {t, 0, 10}];
xf = Last@Flatten@xfun["ValuesOnGrid"];
yf = Last@Flatten@yfun["ValuesOnGrid"];
Norm[basin - {xf, yf}] < 0.2
]
fromBasinQ[basin_, {x0_, y0_}] := Module[{xfun, yfun},
{xfun, yfun} = Quiet@NDSolveValue[{
x'[t] == 3 x[t]^2 - 6 y[t],
y'[t] == 3 y[t]^2 - 6 x[t],
x[0] == x0,
y[0] == y0,
WhenEvent[
Norm[basin - {x[t], y[t]}] < 0.1,
"StopIntegration",
"LocationMethod" -> "StepEnd"
]
}, {x, y}, {t, 0, -10}];
xf = First@Flatten@xfun["ValuesOnGrid"];
yf = First@Flatten@yfun["ValuesOnGrid"];
Norm[basin - {xf, yf}] < 0.2
]
1
Oh how nice. Just what I needed. (accept) Perhaps Wolfram will include some of this functionality.
– David G. Stork
4 hours ago
add a comment |
Similar idea to @C.E.'s, but using StreamColorFunction
, which flummoxed me, since it does not work as documented for StreamDensityPlot
, when the argument is of the form {vector field, scalar field}
:
vf2ode[vf_, vars_List] :=(* vector field to ode *)
D[Through[vars@t], t] == (vf /. Thread[vars -> Through[vars@t]]);
(* StreamColorFunction *)
myColor[0. | 0] = ColorData[97][1];
myColor[1. | 1] = Green;
myColor[2. | 2] = Red;
myColor[3. | 3] = Purple;(* hits both singular points*)
myColor[_] = Black; (* shouldn't happen *)
scf = Function[{xx, yy}, (* stream color function *)
Which[
Norm[{xx, yy} - {0., 0.}] < 10^-8, myColor[1.],
Norm[{xx, yy} - {2., 2.}] < 10^-8, myColor[2.],
True, myColor@Total[
Block[{x, y, t, color},
NDSolveValue[{vf2ode[{3 x^2 - 6 y, 3 y^2 - 6 x}, {x, y}], {x[0], y[0]} == {xx, yy},
color[0] == 0,
WhenEvent[Abs[x[t]] > 5.1, "StopIntegration"],
WhenEvent[Abs[y[t]] > 5.1, "StopIntegration"],
WhenEvent[Norm[{x[t], y[t]} - cp[[1]]] < 10^-1, (* unstable: needs large tol. *)
{color[t] -> color[t] + 1, "StopIntegration"}],
WhenEvent[Norm[{x[t], y[t]} - cp[[2]]] < 10^-4,
{color[t] -> color[t] + 2, "StopIntegration"}]},
color["ValuesOnGrid"],
{t, -100, 100},
StartingStepSize -> 0.001,
DiscreteVariables -> {color}
][[{1, -1}]]
]
]
]
];
(* unstable separatrices *)
sp = Map[Last,
NDSolveValue[{vf2ode[{3 x^2 - 6 y, 3 y^2 - 6 x}, {x, y}], {x[0], y[0]} == #,
WhenEvent[Abs[x[t]] > 3.3, "StopIntegration"],
WhenEvent[Abs[y[t]] > 3.3, "StopIntegration"]},
{x["ValuesOnGrid"], y["ValuesOnGrid"]},
{t, 0, 100},
StartingStepSize -> 0.001, PrecisionGoal -> 10, AccuracyGoal -> 15
] & /@ ({{-1, 1}, {1, -1}}/10^8),
{2}]
Graphics:
Show[
DensityPlot[x^3 + y^3 - 6 x y,
{x, -5, 5}, {y, -5, 5},
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green, Point[{0, 0}]}, PlotRange -> All],
StreamPlot[{3 x^2 - 6 y, 3 y^2 - 6 x},
{x, -5, 5}, {y, -5, 5},
StreamPoints -> {{{1, 1}, {3, 3}, {-1, -1}, Sequence @@ sp, Automatic}},
StreamColorFunction -> scf, StreamColorFunctionScaling -> False]
]
Superb. Thanks so much. (+1) Wolfram should include this functionality.
– David G. Stork
3 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f188622%2fsimple-way-to-highlight-streams-in-basins-of-attraction-in-streamdensityplot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
We could get the positions of the tips of the arrows from the graphics itself, integrate to see where test points at those positions end up, and then color the arrows accordingly. Here is the code for that:
plot = StreamDensityPlot[
{{3 x^2 - 6 y, 3 y^2 - 6 x}, x^3 + y^3 - 6 x y},
{x, -5, 5}, {y, -5, 5},
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green, Point[{0, 0}]}
]
arrows = Cases[plot, _Arrow, Infinity];
tips = arrows[[All, 1, -1]];
headedIntoBasin = intoBasinQ[{0, 0}, #] & /@ tips;
headedFromBasin = fromBasinQ[{2, 2}, #] & /@ tips;
both = Thread[headedIntoBasin && headedFromBasin];
plot /. Join[
# -> {Yellow, #} & /@ Pick[arrows, both],
# -> {Green, #} & /@ Pick[arrows, headedIntoBasin],
# -> {Red, #} & /@ Pick[arrows, headedFromBasin]
]
The functions intoBasinQ
and fromBasinQ
are verbose so I leave them for last, although they are quite simple, they only look complicated:
intoBasinQ[basin_, {x0_, y0_}] := Module[{xfun, yfun},
{xfun, yfun} = Quiet@NDSolveValue[{
x'[t] == 3 x[t]^2 - 6 y[t],
y'[t] == 3 y[t]^2 - 6 x[t],
x[0] == x0,
y[0] == y0,
WhenEvent[
Norm[basin - {x[t], y[t]}] < 0.1,
"StopIntegration",
"LocationMethod" -> "StepEnd"
]
}, {x, y}, {t, 0, 10}];
xf = Last@Flatten@xfun["ValuesOnGrid"];
yf = Last@Flatten@yfun["ValuesOnGrid"];
Norm[basin - {xf, yf}] < 0.2
]
fromBasinQ[basin_, {x0_, y0_}] := Module[{xfun, yfun},
{xfun, yfun} = Quiet@NDSolveValue[{
x'[t] == 3 x[t]^2 - 6 y[t],
y'[t] == 3 y[t]^2 - 6 x[t],
x[0] == x0,
y[0] == y0,
WhenEvent[
Norm[basin - {x[t], y[t]}] < 0.1,
"StopIntegration",
"LocationMethod" -> "StepEnd"
]
}, {x, y}, {t, 0, -10}];
xf = First@Flatten@xfun["ValuesOnGrid"];
yf = First@Flatten@yfun["ValuesOnGrid"];
Norm[basin - {xf, yf}] < 0.2
]
1
Oh how nice. Just what I needed. (accept) Perhaps Wolfram will include some of this functionality.
– David G. Stork
4 hours ago
add a comment |
We could get the positions of the tips of the arrows from the graphics itself, integrate to see where test points at those positions end up, and then color the arrows accordingly. Here is the code for that:
plot = StreamDensityPlot[
{{3 x^2 - 6 y, 3 y^2 - 6 x}, x^3 + y^3 - 6 x y},
{x, -5, 5}, {y, -5, 5},
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green, Point[{0, 0}]}
]
arrows = Cases[plot, _Arrow, Infinity];
tips = arrows[[All, 1, -1]];
headedIntoBasin = intoBasinQ[{0, 0}, #] & /@ tips;
headedFromBasin = fromBasinQ[{2, 2}, #] & /@ tips;
both = Thread[headedIntoBasin && headedFromBasin];
plot /. Join[
# -> {Yellow, #} & /@ Pick[arrows, both],
# -> {Green, #} & /@ Pick[arrows, headedIntoBasin],
# -> {Red, #} & /@ Pick[arrows, headedFromBasin]
]
The functions intoBasinQ
and fromBasinQ
are verbose so I leave them for last, although they are quite simple, they only look complicated:
intoBasinQ[basin_, {x0_, y0_}] := Module[{xfun, yfun},
{xfun, yfun} = Quiet@NDSolveValue[{
x'[t] == 3 x[t]^2 - 6 y[t],
y'[t] == 3 y[t]^2 - 6 x[t],
x[0] == x0,
y[0] == y0,
WhenEvent[
Norm[basin - {x[t], y[t]}] < 0.1,
"StopIntegration",
"LocationMethod" -> "StepEnd"
]
}, {x, y}, {t, 0, 10}];
xf = Last@Flatten@xfun["ValuesOnGrid"];
yf = Last@Flatten@yfun["ValuesOnGrid"];
Norm[basin - {xf, yf}] < 0.2
]
fromBasinQ[basin_, {x0_, y0_}] := Module[{xfun, yfun},
{xfun, yfun} = Quiet@NDSolveValue[{
x'[t] == 3 x[t]^2 - 6 y[t],
y'[t] == 3 y[t]^2 - 6 x[t],
x[0] == x0,
y[0] == y0,
WhenEvent[
Norm[basin - {x[t], y[t]}] < 0.1,
"StopIntegration",
"LocationMethod" -> "StepEnd"
]
}, {x, y}, {t, 0, -10}];
xf = First@Flatten@xfun["ValuesOnGrid"];
yf = First@Flatten@yfun["ValuesOnGrid"];
Norm[basin - {xf, yf}] < 0.2
]
1
Oh how nice. Just what I needed. (accept) Perhaps Wolfram will include some of this functionality.
– David G. Stork
4 hours ago
add a comment |
We could get the positions of the tips of the arrows from the graphics itself, integrate to see where test points at those positions end up, and then color the arrows accordingly. Here is the code for that:
plot = StreamDensityPlot[
{{3 x^2 - 6 y, 3 y^2 - 6 x}, x^3 + y^3 - 6 x y},
{x, -5, 5}, {y, -5, 5},
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green, Point[{0, 0}]}
]
arrows = Cases[plot, _Arrow, Infinity];
tips = arrows[[All, 1, -1]];
headedIntoBasin = intoBasinQ[{0, 0}, #] & /@ tips;
headedFromBasin = fromBasinQ[{2, 2}, #] & /@ tips;
both = Thread[headedIntoBasin && headedFromBasin];
plot /. Join[
# -> {Yellow, #} & /@ Pick[arrows, both],
# -> {Green, #} & /@ Pick[arrows, headedIntoBasin],
# -> {Red, #} & /@ Pick[arrows, headedFromBasin]
]
The functions intoBasinQ
and fromBasinQ
are verbose so I leave them for last, although they are quite simple, they only look complicated:
intoBasinQ[basin_, {x0_, y0_}] := Module[{xfun, yfun},
{xfun, yfun} = Quiet@NDSolveValue[{
x'[t] == 3 x[t]^2 - 6 y[t],
y'[t] == 3 y[t]^2 - 6 x[t],
x[0] == x0,
y[0] == y0,
WhenEvent[
Norm[basin - {x[t], y[t]}] < 0.1,
"StopIntegration",
"LocationMethod" -> "StepEnd"
]
}, {x, y}, {t, 0, 10}];
xf = Last@Flatten@xfun["ValuesOnGrid"];
yf = Last@Flatten@yfun["ValuesOnGrid"];
Norm[basin - {xf, yf}] < 0.2
]
fromBasinQ[basin_, {x0_, y0_}] := Module[{xfun, yfun},
{xfun, yfun} = Quiet@NDSolveValue[{
x'[t] == 3 x[t]^2 - 6 y[t],
y'[t] == 3 y[t]^2 - 6 x[t],
x[0] == x0,
y[0] == y0,
WhenEvent[
Norm[basin - {x[t], y[t]}] < 0.1,
"StopIntegration",
"LocationMethod" -> "StepEnd"
]
}, {x, y}, {t, 0, -10}];
xf = First@Flatten@xfun["ValuesOnGrid"];
yf = First@Flatten@yfun["ValuesOnGrid"];
Norm[basin - {xf, yf}] < 0.2
]
We could get the positions of the tips of the arrows from the graphics itself, integrate to see where test points at those positions end up, and then color the arrows accordingly. Here is the code for that:
plot = StreamDensityPlot[
{{3 x^2 - 6 y, 3 y^2 - 6 x}, x^3 + y^3 - 6 x y},
{x, -5, 5}, {y, -5, 5},
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green, Point[{0, 0}]}
]
arrows = Cases[plot, _Arrow, Infinity];
tips = arrows[[All, 1, -1]];
headedIntoBasin = intoBasinQ[{0, 0}, #] & /@ tips;
headedFromBasin = fromBasinQ[{2, 2}, #] & /@ tips;
both = Thread[headedIntoBasin && headedFromBasin];
plot /. Join[
# -> {Yellow, #} & /@ Pick[arrows, both],
# -> {Green, #} & /@ Pick[arrows, headedIntoBasin],
# -> {Red, #} & /@ Pick[arrows, headedFromBasin]
]
The functions intoBasinQ
and fromBasinQ
are verbose so I leave them for last, although they are quite simple, they only look complicated:
intoBasinQ[basin_, {x0_, y0_}] := Module[{xfun, yfun},
{xfun, yfun} = Quiet@NDSolveValue[{
x'[t] == 3 x[t]^2 - 6 y[t],
y'[t] == 3 y[t]^2 - 6 x[t],
x[0] == x0,
y[0] == y0,
WhenEvent[
Norm[basin - {x[t], y[t]}] < 0.1,
"StopIntegration",
"LocationMethod" -> "StepEnd"
]
}, {x, y}, {t, 0, 10}];
xf = Last@Flatten@xfun["ValuesOnGrid"];
yf = Last@Flatten@yfun["ValuesOnGrid"];
Norm[basin - {xf, yf}] < 0.2
]
fromBasinQ[basin_, {x0_, y0_}] := Module[{xfun, yfun},
{xfun, yfun} = Quiet@NDSolveValue[{
x'[t] == 3 x[t]^2 - 6 y[t],
y'[t] == 3 y[t]^2 - 6 x[t],
x[0] == x0,
y[0] == y0,
WhenEvent[
Norm[basin - {x[t], y[t]}] < 0.1,
"StopIntegration",
"LocationMethod" -> "StepEnd"
]
}, {x, y}, {t, 0, -10}];
xf = First@Flatten@xfun["ValuesOnGrid"];
yf = First@Flatten@yfun["ValuesOnGrid"];
Norm[basin - {xf, yf}] < 0.2
]
edited 4 hours ago
answered 4 hours ago
C. E.
49.7k396201
49.7k396201
1
Oh how nice. Just what I needed. (accept) Perhaps Wolfram will include some of this functionality.
– David G. Stork
4 hours ago
add a comment |
1
Oh how nice. Just what I needed. (accept) Perhaps Wolfram will include some of this functionality.
– David G. Stork
4 hours ago
1
1
Oh how nice. Just what I needed. (accept) Perhaps Wolfram will include some of this functionality.
– David G. Stork
4 hours ago
Oh how nice. Just what I needed. (accept) Perhaps Wolfram will include some of this functionality.
– David G. Stork
4 hours ago
add a comment |
Similar idea to @C.E.'s, but using StreamColorFunction
, which flummoxed me, since it does not work as documented for StreamDensityPlot
, when the argument is of the form {vector field, scalar field}
:
vf2ode[vf_, vars_List] :=(* vector field to ode *)
D[Through[vars@t], t] == (vf /. Thread[vars -> Through[vars@t]]);
(* StreamColorFunction *)
myColor[0. | 0] = ColorData[97][1];
myColor[1. | 1] = Green;
myColor[2. | 2] = Red;
myColor[3. | 3] = Purple;(* hits both singular points*)
myColor[_] = Black; (* shouldn't happen *)
scf = Function[{xx, yy}, (* stream color function *)
Which[
Norm[{xx, yy} - {0., 0.}] < 10^-8, myColor[1.],
Norm[{xx, yy} - {2., 2.}] < 10^-8, myColor[2.],
True, myColor@Total[
Block[{x, y, t, color},
NDSolveValue[{vf2ode[{3 x^2 - 6 y, 3 y^2 - 6 x}, {x, y}], {x[0], y[0]} == {xx, yy},
color[0] == 0,
WhenEvent[Abs[x[t]] > 5.1, "StopIntegration"],
WhenEvent[Abs[y[t]] > 5.1, "StopIntegration"],
WhenEvent[Norm[{x[t], y[t]} - cp[[1]]] < 10^-1, (* unstable: needs large tol. *)
{color[t] -> color[t] + 1, "StopIntegration"}],
WhenEvent[Norm[{x[t], y[t]} - cp[[2]]] < 10^-4,
{color[t] -> color[t] + 2, "StopIntegration"}]},
color["ValuesOnGrid"],
{t, -100, 100},
StartingStepSize -> 0.001,
DiscreteVariables -> {color}
][[{1, -1}]]
]
]
]
];
(* unstable separatrices *)
sp = Map[Last,
NDSolveValue[{vf2ode[{3 x^2 - 6 y, 3 y^2 - 6 x}, {x, y}], {x[0], y[0]} == #,
WhenEvent[Abs[x[t]] > 3.3, "StopIntegration"],
WhenEvent[Abs[y[t]] > 3.3, "StopIntegration"]},
{x["ValuesOnGrid"], y["ValuesOnGrid"]},
{t, 0, 100},
StartingStepSize -> 0.001, PrecisionGoal -> 10, AccuracyGoal -> 15
] & /@ ({{-1, 1}, {1, -1}}/10^8),
{2}]
Graphics:
Show[
DensityPlot[x^3 + y^3 - 6 x y,
{x, -5, 5}, {y, -5, 5},
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green, Point[{0, 0}]}, PlotRange -> All],
StreamPlot[{3 x^2 - 6 y, 3 y^2 - 6 x},
{x, -5, 5}, {y, -5, 5},
StreamPoints -> {{{1, 1}, {3, 3}, {-1, -1}, Sequence @@ sp, Automatic}},
StreamColorFunction -> scf, StreamColorFunctionScaling -> False]
]
Superb. Thanks so much. (+1) Wolfram should include this functionality.
– David G. Stork
3 hours ago
add a comment |
Similar idea to @C.E.'s, but using StreamColorFunction
, which flummoxed me, since it does not work as documented for StreamDensityPlot
, when the argument is of the form {vector field, scalar field}
:
vf2ode[vf_, vars_List] :=(* vector field to ode *)
D[Through[vars@t], t] == (vf /. Thread[vars -> Through[vars@t]]);
(* StreamColorFunction *)
myColor[0. | 0] = ColorData[97][1];
myColor[1. | 1] = Green;
myColor[2. | 2] = Red;
myColor[3. | 3] = Purple;(* hits both singular points*)
myColor[_] = Black; (* shouldn't happen *)
scf = Function[{xx, yy}, (* stream color function *)
Which[
Norm[{xx, yy} - {0., 0.}] < 10^-8, myColor[1.],
Norm[{xx, yy} - {2., 2.}] < 10^-8, myColor[2.],
True, myColor@Total[
Block[{x, y, t, color},
NDSolveValue[{vf2ode[{3 x^2 - 6 y, 3 y^2 - 6 x}, {x, y}], {x[0], y[0]} == {xx, yy},
color[0] == 0,
WhenEvent[Abs[x[t]] > 5.1, "StopIntegration"],
WhenEvent[Abs[y[t]] > 5.1, "StopIntegration"],
WhenEvent[Norm[{x[t], y[t]} - cp[[1]]] < 10^-1, (* unstable: needs large tol. *)
{color[t] -> color[t] + 1, "StopIntegration"}],
WhenEvent[Norm[{x[t], y[t]} - cp[[2]]] < 10^-4,
{color[t] -> color[t] + 2, "StopIntegration"}]},
color["ValuesOnGrid"],
{t, -100, 100},
StartingStepSize -> 0.001,
DiscreteVariables -> {color}
][[{1, -1}]]
]
]
]
];
(* unstable separatrices *)
sp = Map[Last,
NDSolveValue[{vf2ode[{3 x^2 - 6 y, 3 y^2 - 6 x}, {x, y}], {x[0], y[0]} == #,
WhenEvent[Abs[x[t]] > 3.3, "StopIntegration"],
WhenEvent[Abs[y[t]] > 3.3, "StopIntegration"]},
{x["ValuesOnGrid"], y["ValuesOnGrid"]},
{t, 0, 100},
StartingStepSize -> 0.001, PrecisionGoal -> 10, AccuracyGoal -> 15
] & /@ ({{-1, 1}, {1, -1}}/10^8),
{2}]
Graphics:
Show[
DensityPlot[x^3 + y^3 - 6 x y,
{x, -5, 5}, {y, -5, 5},
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green, Point[{0, 0}]}, PlotRange -> All],
StreamPlot[{3 x^2 - 6 y, 3 y^2 - 6 x},
{x, -5, 5}, {y, -5, 5},
StreamPoints -> {{{1, 1}, {3, 3}, {-1, -1}, Sequence @@ sp, Automatic}},
StreamColorFunction -> scf, StreamColorFunctionScaling -> False]
]
Superb. Thanks so much. (+1) Wolfram should include this functionality.
– David G. Stork
3 hours ago
add a comment |
Similar idea to @C.E.'s, but using StreamColorFunction
, which flummoxed me, since it does not work as documented for StreamDensityPlot
, when the argument is of the form {vector field, scalar field}
:
vf2ode[vf_, vars_List] :=(* vector field to ode *)
D[Through[vars@t], t] == (vf /. Thread[vars -> Through[vars@t]]);
(* StreamColorFunction *)
myColor[0. | 0] = ColorData[97][1];
myColor[1. | 1] = Green;
myColor[2. | 2] = Red;
myColor[3. | 3] = Purple;(* hits both singular points*)
myColor[_] = Black; (* shouldn't happen *)
scf = Function[{xx, yy}, (* stream color function *)
Which[
Norm[{xx, yy} - {0., 0.}] < 10^-8, myColor[1.],
Norm[{xx, yy} - {2., 2.}] < 10^-8, myColor[2.],
True, myColor@Total[
Block[{x, y, t, color},
NDSolveValue[{vf2ode[{3 x^2 - 6 y, 3 y^2 - 6 x}, {x, y}], {x[0], y[0]} == {xx, yy},
color[0] == 0,
WhenEvent[Abs[x[t]] > 5.1, "StopIntegration"],
WhenEvent[Abs[y[t]] > 5.1, "StopIntegration"],
WhenEvent[Norm[{x[t], y[t]} - cp[[1]]] < 10^-1, (* unstable: needs large tol. *)
{color[t] -> color[t] + 1, "StopIntegration"}],
WhenEvent[Norm[{x[t], y[t]} - cp[[2]]] < 10^-4,
{color[t] -> color[t] + 2, "StopIntegration"}]},
color["ValuesOnGrid"],
{t, -100, 100},
StartingStepSize -> 0.001,
DiscreteVariables -> {color}
][[{1, -1}]]
]
]
]
];
(* unstable separatrices *)
sp = Map[Last,
NDSolveValue[{vf2ode[{3 x^2 - 6 y, 3 y^2 - 6 x}, {x, y}], {x[0], y[0]} == #,
WhenEvent[Abs[x[t]] > 3.3, "StopIntegration"],
WhenEvent[Abs[y[t]] > 3.3, "StopIntegration"]},
{x["ValuesOnGrid"], y["ValuesOnGrid"]},
{t, 0, 100},
StartingStepSize -> 0.001, PrecisionGoal -> 10, AccuracyGoal -> 15
] & /@ ({{-1, 1}, {1, -1}}/10^8),
{2}]
Graphics:
Show[
DensityPlot[x^3 + y^3 - 6 x y,
{x, -5, 5}, {y, -5, 5},
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green, Point[{0, 0}]}, PlotRange -> All],
StreamPlot[{3 x^2 - 6 y, 3 y^2 - 6 x},
{x, -5, 5}, {y, -5, 5},
StreamPoints -> {{{1, 1}, {3, 3}, {-1, -1}, Sequence @@ sp, Automatic}},
StreamColorFunction -> scf, StreamColorFunctionScaling -> False]
]
Similar idea to @C.E.'s, but using StreamColorFunction
, which flummoxed me, since it does not work as documented for StreamDensityPlot
, when the argument is of the form {vector field, scalar field}
:
vf2ode[vf_, vars_List] :=(* vector field to ode *)
D[Through[vars@t], t] == (vf /. Thread[vars -> Through[vars@t]]);
(* StreamColorFunction *)
myColor[0. | 0] = ColorData[97][1];
myColor[1. | 1] = Green;
myColor[2. | 2] = Red;
myColor[3. | 3] = Purple;(* hits both singular points*)
myColor[_] = Black; (* shouldn't happen *)
scf = Function[{xx, yy}, (* stream color function *)
Which[
Norm[{xx, yy} - {0., 0.}] < 10^-8, myColor[1.],
Norm[{xx, yy} - {2., 2.}] < 10^-8, myColor[2.],
True, myColor@Total[
Block[{x, y, t, color},
NDSolveValue[{vf2ode[{3 x^2 - 6 y, 3 y^2 - 6 x}, {x, y}], {x[0], y[0]} == {xx, yy},
color[0] == 0,
WhenEvent[Abs[x[t]] > 5.1, "StopIntegration"],
WhenEvent[Abs[y[t]] > 5.1, "StopIntegration"],
WhenEvent[Norm[{x[t], y[t]} - cp[[1]]] < 10^-1, (* unstable: needs large tol. *)
{color[t] -> color[t] + 1, "StopIntegration"}],
WhenEvent[Norm[{x[t], y[t]} - cp[[2]]] < 10^-4,
{color[t] -> color[t] + 2, "StopIntegration"}]},
color["ValuesOnGrid"],
{t, -100, 100},
StartingStepSize -> 0.001,
DiscreteVariables -> {color}
][[{1, -1}]]
]
]
]
];
(* unstable separatrices *)
sp = Map[Last,
NDSolveValue[{vf2ode[{3 x^2 - 6 y, 3 y^2 - 6 x}, {x, y}], {x[0], y[0]} == #,
WhenEvent[Abs[x[t]] > 3.3, "StopIntegration"],
WhenEvent[Abs[y[t]] > 3.3, "StopIntegration"]},
{x["ValuesOnGrid"], y["ValuesOnGrid"]},
{t, 0, 100},
StartingStepSize -> 0.001, PrecisionGoal -> 10, AccuracyGoal -> 15
] & /@ ({{-1, 1}, {1, -1}}/10^8),
{2}]
Graphics:
Show[
DensityPlot[x^3 + y^3 - 6 x y,
{x, -5, 5}, {y, -5, 5},
Epilog -> {Red, PointSize[0.03], Point[{2, 2}], Green, Point[{0, 0}]}, PlotRange -> All],
StreamPlot[{3 x^2 - 6 y, 3 y^2 - 6 x},
{x, -5, 5}, {y, -5, 5},
StreamPoints -> {{{1, 1}, {3, 3}, {-1, -1}, Sequence @@ sp, Automatic}},
StreamColorFunction -> scf, StreamColorFunctionScaling -> False]
]
answered 4 hours ago
Michael E2
145k11194464
145k11194464
Superb. Thanks so much. (+1) Wolfram should include this functionality.
– David G. Stork
3 hours ago
add a comment |
Superb. Thanks so much. (+1) Wolfram should include this functionality.
– David G. Stork
3 hours ago
Superb. Thanks so much. (+1) Wolfram should include this functionality.
– David G. Stork
3 hours ago
Superb. Thanks so much. (+1) Wolfram should include this functionality.
– David G. Stork
3 hours ago
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f188622%2fsimple-way-to-highlight-streams-in-basins-of-attraction-in-streamdensityplot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
For the green streams going in and out of the saddle point, do you just want the stable and unstable manifolds (4 lines -- in from 2 sides and out from 2 others)?
– Chris K
5 hours ago
Four lines would suffice.
– David G. Stork
5 hours ago