Is there an easy way to see that binary expansion is unique? [duplicate]
up vote
6
down vote
favorite
This question already has an answer here:
Binary expansion Unique
4 answers
Let $n in mathbb{N}$. Using the Euclidean algorithm, it is straightforward to see that every natural number can be written as
$$n = sum_{j=0}^m epsilon_j(n) 2^j $$
where $epsilon_j(n) in {0,1}$.
Is there an easy way to show that this way of writing the number is unique?
elementary-number-theory binary
marked as duplicate by Asaf Karagila♦ yesterday
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
|
show 2 more comments
up vote
6
down vote
favorite
This question already has an answer here:
Binary expansion Unique
4 answers
Let $n in mathbb{N}$. Using the Euclidean algorithm, it is straightforward to see that every natural number can be written as
$$n = sum_{j=0}^m epsilon_j(n) 2^j $$
where $epsilon_j(n) in {0,1}$.
Is there an easy way to show that this way of writing the number is unique?
elementary-number-theory binary
marked as duplicate by Asaf Karagila♦ yesterday
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
8
Have you tried induction?
– saulspatz
2 days ago
8
@stanleydodds Why are you answering in a comment?
– Arthur
2 days ago
4
@stanleydodds Outlines of answers are still answers. Even one-line hints belong in answer posts in my opinion
– Arthur
2 days ago
Index $j$ should start at $0$. If it starts at $1$ then RHS is even.
– drhab
2 days ago
3
As presented, such expansions are not unique. For uniqueness, you need to add the constraint that $$epsilon_m(n) = 1$$. Otherwise, an arbitrary number of additional leading 0 terms can be included to produce distinct expansions of the same n.
– John Bollinger
2 days ago
|
show 2 more comments
up vote
6
down vote
favorite
up vote
6
down vote
favorite
This question already has an answer here:
Binary expansion Unique
4 answers
Let $n in mathbb{N}$. Using the Euclidean algorithm, it is straightforward to see that every natural number can be written as
$$n = sum_{j=0}^m epsilon_j(n) 2^j $$
where $epsilon_j(n) in {0,1}$.
Is there an easy way to show that this way of writing the number is unique?
elementary-number-theory binary
This question already has an answer here:
Binary expansion Unique
4 answers
Let $n in mathbb{N}$. Using the Euclidean algorithm, it is straightforward to see that every natural number can be written as
$$n = sum_{j=0}^m epsilon_j(n) 2^j $$
where $epsilon_j(n) in {0,1}$.
Is there an easy way to show that this way of writing the number is unique?
This question already has an answer here:
Binary expansion Unique
4 answers
elementary-number-theory binary
elementary-number-theory binary
edited 2 days ago
asked 2 days ago
Math_QED
6,83031449
6,83031449
marked as duplicate by Asaf Karagila♦ yesterday
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Asaf Karagila♦ yesterday
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
8
Have you tried induction?
– saulspatz
2 days ago
8
@stanleydodds Why are you answering in a comment?
– Arthur
2 days ago
4
@stanleydodds Outlines of answers are still answers. Even one-line hints belong in answer posts in my opinion
– Arthur
2 days ago
Index $j$ should start at $0$. If it starts at $1$ then RHS is even.
– drhab
2 days ago
3
As presented, such expansions are not unique. For uniqueness, you need to add the constraint that $$epsilon_m(n) = 1$$. Otherwise, an arbitrary number of additional leading 0 terms can be included to produce distinct expansions of the same n.
– John Bollinger
2 days ago
|
show 2 more comments
8
Have you tried induction?
– saulspatz
2 days ago
8
@stanleydodds Why are you answering in a comment?
– Arthur
2 days ago
4
@stanleydodds Outlines of answers are still answers. Even one-line hints belong in answer posts in my opinion
– Arthur
2 days ago
Index $j$ should start at $0$. If it starts at $1$ then RHS is even.
– drhab
2 days ago
3
As presented, such expansions are not unique. For uniqueness, you need to add the constraint that $$epsilon_m(n) = 1$$. Otherwise, an arbitrary number of additional leading 0 terms can be included to produce distinct expansions of the same n.
– John Bollinger
2 days ago
8
8
Have you tried induction?
– saulspatz
2 days ago
Have you tried induction?
– saulspatz
2 days ago
8
8
@stanleydodds Why are you answering in a comment?
– Arthur
2 days ago
@stanleydodds Why are you answering in a comment?
– Arthur
2 days ago
4
4
@stanleydodds Outlines of answers are still answers. Even one-line hints belong in answer posts in my opinion
– Arthur
2 days ago
@stanleydodds Outlines of answers are still answers. Even one-line hints belong in answer posts in my opinion
– Arthur
2 days ago
Index $j$ should start at $0$. If it starts at $1$ then RHS is even.
– drhab
2 days ago
Index $j$ should start at $0$. If it starts at $1$ then RHS is even.
– drhab
2 days ago
3
3
As presented, such expansions are not unique. For uniqueness, you need to add the constraint that $$epsilon_m(n) = 1$$. Otherwise, an arbitrary number of additional leading 0 terms can be included to produce distinct expansions of the same n.
– John Bollinger
2 days ago
As presented, such expansions are not unique. For uniqueness, you need to add the constraint that $$epsilon_m(n) = 1$$. Otherwise, an arbitrary number of additional leading 0 terms can be included to produce distinct expansions of the same n.
– John Bollinger
2 days ago
|
show 2 more comments
6 Answers
6
active
oldest
votes
up vote
10
down vote
How do you know the ordinary base $10$ expansion is unique?
Suppose digit strings $s$ and $t$ both represent the positive integer $n$. Then the units digit of each must be $d = n pmod {10}$. So you can lop off both units digits. The lopped strings then both represent $(n-d)/10$.
Continue with the other digits (from the right) until you're done. Or, for a formal induction proof, apply that argument to the least $n$ with two representations to deduce a contradiction.
This argument works for any base. It's the standard algorithm for base conversion, finding the digits from right to left. It depends on knowing that you can do division with remainder, but not on the full strength of the Euclidean algorithm.
add a comment |
up vote
8
down vote
Suppose $exists ninBbb N$ such that $n=sum_{iin A}2^i=sum_{iin B}2^i$ with $A,BsubsetBbb N_0$. Then $sum_{iin A}2^i-sum_{iin B}2^i=0$ and so for set $C=ADelta B$ (symmetric difference) and some function $s:Crightarrow{-1,1}$ we have $sum_{iin C}s(i)2^i=0$. Now if $Cneemptyset$ then $C$ has a largest element (say $x$) and we have $sum_{iin Cbackslash{x}}s(i)2^i=-s(x)2^x$ so $sum_{iin Cbackslash{x}}-{s(i)over s(x)}2^i=2^x$ but we now know $Cbackslash{x}subset{0,1,2,...,x-1}$ and also $-{s(i)over s(x)}le1$ so we have $sum_{iin Cbackslash{x}}-{s(i)over s(x)}2^ilesum_{i=0}^{x-1}2^i=2^{x}-1$ which is a contradiction. Hence $C=emptyset$, so $A=B$, so the representations are in fact the same, hence the representation of n is unique (assuming it exists, which I gather has been shown already).
add a comment |
up vote
3
down vote
Not really an answer. But here's just a different way of framing your question which I think is neat.
Let $f: P_{fin}(mathbb{N}) to mathbb{N}$ by $f(S) =sum_{sin S} 2^s$.
$f$ is onto. You have claimed this can be handled Euclidean algorithm.
What about $1-1$? We use the argument Stanley Dodds presented.
So we've seen that the set of all finite subsets of the natural numbers is in 1-1 correspondence with the set of natural numbers.
add a comment |
up vote
3
down vote
Hint $ $ Uniqueness of radix rep can be deduced intuitively from the simple fact that an integer root of an integer coef polynomial divides the least degree coef (i.e. Rational Root Test). For example
$qquad11001_2 = g(2),, g(x) = x^4+x^3+1$
$qquad 10011_2 = h(2), h(x) = x^4+x+1$
If they're equal $, 0 = g(2)-h(2) =: f(2),$ for $,f = g-h = x(x^2-1),$ so $,2,$ is a root of $,x^2-1,$ so $, 2^2 = 1,Rightarrow, 2mid 1,,$ contradiction. This idea works generally - the nonzero coef's of $g-h$ are $pm1$ contra the root $2$ must divide the least degree such coef. Below is the proof for general radix.
If $,g(x) = sum g_i x^i$ is a polynomial with integer coefficients $,g_i,$ such that $,0le g_i < b,$ and $,g(b) = n,$ then we call $,(g,b),$ a radix $,b,$ representation of $,n.,$ It is unique: $ $ if $,n,$ has another rep $,(h,b),,$ with $,g(x) ne h(x),,$ then $,f(x)= g(x)-h(x)ne 0,$ has root $,b,$ but all coefficients $,color{#c00}{|f_i| < b},,$ contra the below slight generalization of: $ $ integer roots of integer polynomials divide their constant term.
Theorem $ $ If $,f(x) = x^k(color{#0a0}{f_0}!+f_1 x +cdots + f_n x^n)=x^kbar f(x),$ is a polynomial with integer coefficients $,f_i,$ and with $,color{#0a0}{f_0ne 0},$ then an integer root $,bne 0,$ satisfies $,bmid f_0,,$ so $,color{#c00}{|b| le |f_0|}$
Proof $ 0 = f(b) = b^k bar f(b),overset{large b,ne, 0}Rightarrow, 0 = bar f(b),,$ so, subtracting $,f_0$ from both sides yields $$-f_0 =, b,(f_1!+f_2 b+,cdots+f_n b^{n-1}), Rightarrow,bmid f_0, overset{large color{#0a0}{f_0,ne, 0}}Rightarrow, |b| le |f_0|qquad {bf QED}qquadquad$$
Remark $ $ Thus uniqueness of radix rep is essentially a special case of the Rational Root Test,
add a comment |
up vote
3
down vote
A very simple proof is by the pigeonhole principle. The key observation is that not only does any natural number $n$ have a binary expansion $$n = sum_{j=0}^m epsilon_j(n) 2^j,$$ but if $0leq n<2^N$ then we need no powers of $2$ above $2^{N-1}$ so we can take $m=N-1$. Now, for any fixed $N$, there are $2^N$ natural numbers $n$ such that $0leq n<2^N$ and $2^N$ different ways of choosing $epsilon_j(n)in{0,1}$ for each $j$ from $0$ to $N-1$. So, all $2^N$ of these binary expansions must have distinct sums, or else they would not be able to represent all $2^N$ of the different values of $n$.
This proves that for any $N$, a natural number $n$ has at most one binary expansion using powers of $2$ up to $2^{N-1}$. It follows that $n$ has only one binary expansion, up to adding $0$s at the start (since given two expansions of different lengths, you can always extend one by $0$s to make them the same length, and then they must become the same).
add a comment |
up vote
0
down vote
This argument is very basic but I think the notation is easy to follow:
Suppose a number has two different expansions ${a_i}$ and ${b_i}$. Then
$$ sum_{i=0}^m a_i(n) 2^i = sum_{i=0}^m b_i(n) 2^i $$ Break off the first term in both sums and you can get $$ a_o(n) - b_0(n) = 2sum_{i=1}^m (b_i(n)-a_i(n)) 2^{i-1}$$
The l.h.s can only be ($0-0$), ($0-1$), ($1-0$), or ($1-1$), and it must be divisible by $2$, so it must equal $0$, i.e. $a_0(n) = b_0(n)$. Then you can divide by the $2$ in front of the sum, and repeat the argument (or use induction) to get $a_i(n) = b_i(n)$ for all $i$.
add a comment |
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
10
down vote
How do you know the ordinary base $10$ expansion is unique?
Suppose digit strings $s$ and $t$ both represent the positive integer $n$. Then the units digit of each must be $d = n pmod {10}$. So you can lop off both units digits. The lopped strings then both represent $(n-d)/10$.
Continue with the other digits (from the right) until you're done. Or, for a formal induction proof, apply that argument to the least $n$ with two representations to deduce a contradiction.
This argument works for any base. It's the standard algorithm for base conversion, finding the digits from right to left. It depends on knowing that you can do division with remainder, but not on the full strength of the Euclidean algorithm.
add a comment |
up vote
10
down vote
How do you know the ordinary base $10$ expansion is unique?
Suppose digit strings $s$ and $t$ both represent the positive integer $n$. Then the units digit of each must be $d = n pmod {10}$. So you can lop off both units digits. The lopped strings then both represent $(n-d)/10$.
Continue with the other digits (from the right) until you're done. Or, for a formal induction proof, apply that argument to the least $n$ with two representations to deduce a contradiction.
This argument works for any base. It's the standard algorithm for base conversion, finding the digits from right to left. It depends on knowing that you can do division with remainder, but not on the full strength of the Euclidean algorithm.
add a comment |
up vote
10
down vote
up vote
10
down vote
How do you know the ordinary base $10$ expansion is unique?
Suppose digit strings $s$ and $t$ both represent the positive integer $n$. Then the units digit of each must be $d = n pmod {10}$. So you can lop off both units digits. The lopped strings then both represent $(n-d)/10$.
Continue with the other digits (from the right) until you're done. Or, for a formal induction proof, apply that argument to the least $n$ with two representations to deduce a contradiction.
This argument works for any base. It's the standard algorithm for base conversion, finding the digits from right to left. It depends on knowing that you can do division with remainder, but not on the full strength of the Euclidean algorithm.
How do you know the ordinary base $10$ expansion is unique?
Suppose digit strings $s$ and $t$ both represent the positive integer $n$. Then the units digit of each must be $d = n pmod {10}$. So you can lop off both units digits. The lopped strings then both represent $(n-d)/10$.
Continue with the other digits (from the right) until you're done. Or, for a formal induction proof, apply that argument to the least $n$ with two representations to deduce a contradiction.
This argument works for any base. It's the standard algorithm for base conversion, finding the digits from right to left. It depends on knowing that you can do division with remainder, but not on the full strength of the Euclidean algorithm.
edited 2 days ago
answered 2 days ago
Ethan Bolker
39.7k543103
39.7k543103
add a comment |
add a comment |
up vote
8
down vote
Suppose $exists ninBbb N$ such that $n=sum_{iin A}2^i=sum_{iin B}2^i$ with $A,BsubsetBbb N_0$. Then $sum_{iin A}2^i-sum_{iin B}2^i=0$ and so for set $C=ADelta B$ (symmetric difference) and some function $s:Crightarrow{-1,1}$ we have $sum_{iin C}s(i)2^i=0$. Now if $Cneemptyset$ then $C$ has a largest element (say $x$) and we have $sum_{iin Cbackslash{x}}s(i)2^i=-s(x)2^x$ so $sum_{iin Cbackslash{x}}-{s(i)over s(x)}2^i=2^x$ but we now know $Cbackslash{x}subset{0,1,2,...,x-1}$ and also $-{s(i)over s(x)}le1$ so we have $sum_{iin Cbackslash{x}}-{s(i)over s(x)}2^ilesum_{i=0}^{x-1}2^i=2^{x}-1$ which is a contradiction. Hence $C=emptyset$, so $A=B$, so the representations are in fact the same, hence the representation of n is unique (assuming it exists, which I gather has been shown already).
add a comment |
up vote
8
down vote
Suppose $exists ninBbb N$ such that $n=sum_{iin A}2^i=sum_{iin B}2^i$ with $A,BsubsetBbb N_0$. Then $sum_{iin A}2^i-sum_{iin B}2^i=0$ and so for set $C=ADelta B$ (symmetric difference) and some function $s:Crightarrow{-1,1}$ we have $sum_{iin C}s(i)2^i=0$. Now if $Cneemptyset$ then $C$ has a largest element (say $x$) and we have $sum_{iin Cbackslash{x}}s(i)2^i=-s(x)2^x$ so $sum_{iin Cbackslash{x}}-{s(i)over s(x)}2^i=2^x$ but we now know $Cbackslash{x}subset{0,1,2,...,x-1}$ and also $-{s(i)over s(x)}le1$ so we have $sum_{iin Cbackslash{x}}-{s(i)over s(x)}2^ilesum_{i=0}^{x-1}2^i=2^{x}-1$ which is a contradiction. Hence $C=emptyset$, so $A=B$, so the representations are in fact the same, hence the representation of n is unique (assuming it exists, which I gather has been shown already).
add a comment |
up vote
8
down vote
up vote
8
down vote
Suppose $exists ninBbb N$ such that $n=sum_{iin A}2^i=sum_{iin B}2^i$ with $A,BsubsetBbb N_0$. Then $sum_{iin A}2^i-sum_{iin B}2^i=0$ and so for set $C=ADelta B$ (symmetric difference) and some function $s:Crightarrow{-1,1}$ we have $sum_{iin C}s(i)2^i=0$. Now if $Cneemptyset$ then $C$ has a largest element (say $x$) and we have $sum_{iin Cbackslash{x}}s(i)2^i=-s(x)2^x$ so $sum_{iin Cbackslash{x}}-{s(i)over s(x)}2^i=2^x$ but we now know $Cbackslash{x}subset{0,1,2,...,x-1}$ and also $-{s(i)over s(x)}le1$ so we have $sum_{iin Cbackslash{x}}-{s(i)over s(x)}2^ilesum_{i=0}^{x-1}2^i=2^{x}-1$ which is a contradiction. Hence $C=emptyset$, so $A=B$, so the representations are in fact the same, hence the representation of n is unique (assuming it exists, which I gather has been shown already).
Suppose $exists ninBbb N$ such that $n=sum_{iin A}2^i=sum_{iin B}2^i$ with $A,BsubsetBbb N_0$. Then $sum_{iin A}2^i-sum_{iin B}2^i=0$ and so for set $C=ADelta B$ (symmetric difference) and some function $s:Crightarrow{-1,1}$ we have $sum_{iin C}s(i)2^i=0$. Now if $Cneemptyset$ then $C$ has a largest element (say $x$) and we have $sum_{iin Cbackslash{x}}s(i)2^i=-s(x)2^x$ so $sum_{iin Cbackslash{x}}-{s(i)over s(x)}2^i=2^x$ but we now know $Cbackslash{x}subset{0,1,2,...,x-1}$ and also $-{s(i)over s(x)}le1$ so we have $sum_{iin Cbackslash{x}}-{s(i)over s(x)}2^ilesum_{i=0}^{x-1}2^i=2^{x}-1$ which is a contradiction. Hence $C=emptyset$, so $A=B$, so the representations are in fact the same, hence the representation of n is unique (assuming it exists, which I gather has been shown already).
answered 2 days ago
stanley dodds
4071310
4071310
add a comment |
add a comment |
up vote
3
down vote
Not really an answer. But here's just a different way of framing your question which I think is neat.
Let $f: P_{fin}(mathbb{N}) to mathbb{N}$ by $f(S) =sum_{sin S} 2^s$.
$f$ is onto. You have claimed this can be handled Euclidean algorithm.
What about $1-1$? We use the argument Stanley Dodds presented.
So we've seen that the set of all finite subsets of the natural numbers is in 1-1 correspondence with the set of natural numbers.
add a comment |
up vote
3
down vote
Not really an answer. But here's just a different way of framing your question which I think is neat.
Let $f: P_{fin}(mathbb{N}) to mathbb{N}$ by $f(S) =sum_{sin S} 2^s$.
$f$ is onto. You have claimed this can be handled Euclidean algorithm.
What about $1-1$? We use the argument Stanley Dodds presented.
So we've seen that the set of all finite subsets of the natural numbers is in 1-1 correspondence with the set of natural numbers.
add a comment |
up vote
3
down vote
up vote
3
down vote
Not really an answer. But here's just a different way of framing your question which I think is neat.
Let $f: P_{fin}(mathbb{N}) to mathbb{N}$ by $f(S) =sum_{sin S} 2^s$.
$f$ is onto. You have claimed this can be handled Euclidean algorithm.
What about $1-1$? We use the argument Stanley Dodds presented.
So we've seen that the set of all finite subsets of the natural numbers is in 1-1 correspondence with the set of natural numbers.
Not really an answer. But here's just a different way of framing your question which I think is neat.
Let $f: P_{fin}(mathbb{N}) to mathbb{N}$ by $f(S) =sum_{sin S} 2^s$.
$f$ is onto. You have claimed this can be handled Euclidean algorithm.
What about $1-1$? We use the argument Stanley Dodds presented.
So we've seen that the set of all finite subsets of the natural numbers is in 1-1 correspondence with the set of natural numbers.
edited 2 days ago
answered 2 days ago
Mason
1,9031426
1,9031426
add a comment |
add a comment |
up vote
3
down vote
Hint $ $ Uniqueness of radix rep can be deduced intuitively from the simple fact that an integer root of an integer coef polynomial divides the least degree coef (i.e. Rational Root Test). For example
$qquad11001_2 = g(2),, g(x) = x^4+x^3+1$
$qquad 10011_2 = h(2), h(x) = x^4+x+1$
If they're equal $, 0 = g(2)-h(2) =: f(2),$ for $,f = g-h = x(x^2-1),$ so $,2,$ is a root of $,x^2-1,$ so $, 2^2 = 1,Rightarrow, 2mid 1,,$ contradiction. This idea works generally - the nonzero coef's of $g-h$ are $pm1$ contra the root $2$ must divide the least degree such coef. Below is the proof for general radix.
If $,g(x) = sum g_i x^i$ is a polynomial with integer coefficients $,g_i,$ such that $,0le g_i < b,$ and $,g(b) = n,$ then we call $,(g,b),$ a radix $,b,$ representation of $,n.,$ It is unique: $ $ if $,n,$ has another rep $,(h,b),,$ with $,g(x) ne h(x),,$ then $,f(x)= g(x)-h(x)ne 0,$ has root $,b,$ but all coefficients $,color{#c00}{|f_i| < b},,$ contra the below slight generalization of: $ $ integer roots of integer polynomials divide their constant term.
Theorem $ $ If $,f(x) = x^k(color{#0a0}{f_0}!+f_1 x +cdots + f_n x^n)=x^kbar f(x),$ is a polynomial with integer coefficients $,f_i,$ and with $,color{#0a0}{f_0ne 0},$ then an integer root $,bne 0,$ satisfies $,bmid f_0,,$ so $,color{#c00}{|b| le |f_0|}$
Proof $ 0 = f(b) = b^k bar f(b),overset{large b,ne, 0}Rightarrow, 0 = bar f(b),,$ so, subtracting $,f_0$ from both sides yields $$-f_0 =, b,(f_1!+f_2 b+,cdots+f_n b^{n-1}), Rightarrow,bmid f_0, overset{large color{#0a0}{f_0,ne, 0}}Rightarrow, |b| le |f_0|qquad {bf QED}qquadquad$$
Remark $ $ Thus uniqueness of radix rep is essentially a special case of the Rational Root Test,
add a comment |
up vote
3
down vote
Hint $ $ Uniqueness of radix rep can be deduced intuitively from the simple fact that an integer root of an integer coef polynomial divides the least degree coef (i.e. Rational Root Test). For example
$qquad11001_2 = g(2),, g(x) = x^4+x^3+1$
$qquad 10011_2 = h(2), h(x) = x^4+x+1$
If they're equal $, 0 = g(2)-h(2) =: f(2),$ for $,f = g-h = x(x^2-1),$ so $,2,$ is a root of $,x^2-1,$ so $, 2^2 = 1,Rightarrow, 2mid 1,,$ contradiction. This idea works generally - the nonzero coef's of $g-h$ are $pm1$ contra the root $2$ must divide the least degree such coef. Below is the proof for general radix.
If $,g(x) = sum g_i x^i$ is a polynomial with integer coefficients $,g_i,$ such that $,0le g_i < b,$ and $,g(b) = n,$ then we call $,(g,b),$ a radix $,b,$ representation of $,n.,$ It is unique: $ $ if $,n,$ has another rep $,(h,b),,$ with $,g(x) ne h(x),,$ then $,f(x)= g(x)-h(x)ne 0,$ has root $,b,$ but all coefficients $,color{#c00}{|f_i| < b},,$ contra the below slight generalization of: $ $ integer roots of integer polynomials divide their constant term.
Theorem $ $ If $,f(x) = x^k(color{#0a0}{f_0}!+f_1 x +cdots + f_n x^n)=x^kbar f(x),$ is a polynomial with integer coefficients $,f_i,$ and with $,color{#0a0}{f_0ne 0},$ then an integer root $,bne 0,$ satisfies $,bmid f_0,,$ so $,color{#c00}{|b| le |f_0|}$
Proof $ 0 = f(b) = b^k bar f(b),overset{large b,ne, 0}Rightarrow, 0 = bar f(b),,$ so, subtracting $,f_0$ from both sides yields $$-f_0 =, b,(f_1!+f_2 b+,cdots+f_n b^{n-1}), Rightarrow,bmid f_0, overset{large color{#0a0}{f_0,ne, 0}}Rightarrow, |b| le |f_0|qquad {bf QED}qquadquad$$
Remark $ $ Thus uniqueness of radix rep is essentially a special case of the Rational Root Test,
add a comment |
up vote
3
down vote
up vote
3
down vote
Hint $ $ Uniqueness of radix rep can be deduced intuitively from the simple fact that an integer root of an integer coef polynomial divides the least degree coef (i.e. Rational Root Test). For example
$qquad11001_2 = g(2),, g(x) = x^4+x^3+1$
$qquad 10011_2 = h(2), h(x) = x^4+x+1$
If they're equal $, 0 = g(2)-h(2) =: f(2),$ for $,f = g-h = x(x^2-1),$ so $,2,$ is a root of $,x^2-1,$ so $, 2^2 = 1,Rightarrow, 2mid 1,,$ contradiction. This idea works generally - the nonzero coef's of $g-h$ are $pm1$ contra the root $2$ must divide the least degree such coef. Below is the proof for general radix.
If $,g(x) = sum g_i x^i$ is a polynomial with integer coefficients $,g_i,$ such that $,0le g_i < b,$ and $,g(b) = n,$ then we call $,(g,b),$ a radix $,b,$ representation of $,n.,$ It is unique: $ $ if $,n,$ has another rep $,(h,b),,$ with $,g(x) ne h(x),,$ then $,f(x)= g(x)-h(x)ne 0,$ has root $,b,$ but all coefficients $,color{#c00}{|f_i| < b},,$ contra the below slight generalization of: $ $ integer roots of integer polynomials divide their constant term.
Theorem $ $ If $,f(x) = x^k(color{#0a0}{f_0}!+f_1 x +cdots + f_n x^n)=x^kbar f(x),$ is a polynomial with integer coefficients $,f_i,$ and with $,color{#0a0}{f_0ne 0},$ then an integer root $,bne 0,$ satisfies $,bmid f_0,,$ so $,color{#c00}{|b| le |f_0|}$
Proof $ 0 = f(b) = b^k bar f(b),overset{large b,ne, 0}Rightarrow, 0 = bar f(b),,$ so, subtracting $,f_0$ from both sides yields $$-f_0 =, b,(f_1!+f_2 b+,cdots+f_n b^{n-1}), Rightarrow,bmid f_0, overset{large color{#0a0}{f_0,ne, 0}}Rightarrow, |b| le |f_0|qquad {bf QED}qquadquad$$
Remark $ $ Thus uniqueness of radix rep is essentially a special case of the Rational Root Test,
Hint $ $ Uniqueness of radix rep can be deduced intuitively from the simple fact that an integer root of an integer coef polynomial divides the least degree coef (i.e. Rational Root Test). For example
$qquad11001_2 = g(2),, g(x) = x^4+x^3+1$
$qquad 10011_2 = h(2), h(x) = x^4+x+1$
If they're equal $, 0 = g(2)-h(2) =: f(2),$ for $,f = g-h = x(x^2-1),$ so $,2,$ is a root of $,x^2-1,$ so $, 2^2 = 1,Rightarrow, 2mid 1,,$ contradiction. This idea works generally - the nonzero coef's of $g-h$ are $pm1$ contra the root $2$ must divide the least degree such coef. Below is the proof for general radix.
If $,g(x) = sum g_i x^i$ is a polynomial with integer coefficients $,g_i,$ such that $,0le g_i < b,$ and $,g(b) = n,$ then we call $,(g,b),$ a radix $,b,$ representation of $,n.,$ It is unique: $ $ if $,n,$ has another rep $,(h,b),,$ with $,g(x) ne h(x),,$ then $,f(x)= g(x)-h(x)ne 0,$ has root $,b,$ but all coefficients $,color{#c00}{|f_i| < b},,$ contra the below slight generalization of: $ $ integer roots of integer polynomials divide their constant term.
Theorem $ $ If $,f(x) = x^k(color{#0a0}{f_0}!+f_1 x +cdots + f_n x^n)=x^kbar f(x),$ is a polynomial with integer coefficients $,f_i,$ and with $,color{#0a0}{f_0ne 0},$ then an integer root $,bne 0,$ satisfies $,bmid f_0,,$ so $,color{#c00}{|b| le |f_0|}$
Proof $ 0 = f(b) = b^k bar f(b),overset{large b,ne, 0}Rightarrow, 0 = bar f(b),,$ so, subtracting $,f_0$ from both sides yields $$-f_0 =, b,(f_1!+f_2 b+,cdots+f_n b^{n-1}), Rightarrow,bmid f_0, overset{large color{#0a0}{f_0,ne, 0}}Rightarrow, |b| le |f_0|qquad {bf QED}qquadquad$$
Remark $ $ Thus uniqueness of radix rep is essentially a special case of the Rational Root Test,
edited 2 days ago
answered 2 days ago
Bill Dubuque
207k29189624
207k29189624
add a comment |
add a comment |
up vote
3
down vote
A very simple proof is by the pigeonhole principle. The key observation is that not only does any natural number $n$ have a binary expansion $$n = sum_{j=0}^m epsilon_j(n) 2^j,$$ but if $0leq n<2^N$ then we need no powers of $2$ above $2^{N-1}$ so we can take $m=N-1$. Now, for any fixed $N$, there are $2^N$ natural numbers $n$ such that $0leq n<2^N$ and $2^N$ different ways of choosing $epsilon_j(n)in{0,1}$ for each $j$ from $0$ to $N-1$. So, all $2^N$ of these binary expansions must have distinct sums, or else they would not be able to represent all $2^N$ of the different values of $n$.
This proves that for any $N$, a natural number $n$ has at most one binary expansion using powers of $2$ up to $2^{N-1}$. It follows that $n$ has only one binary expansion, up to adding $0$s at the start (since given two expansions of different lengths, you can always extend one by $0$s to make them the same length, and then they must become the same).
add a comment |
up vote
3
down vote
A very simple proof is by the pigeonhole principle. The key observation is that not only does any natural number $n$ have a binary expansion $$n = sum_{j=0}^m epsilon_j(n) 2^j,$$ but if $0leq n<2^N$ then we need no powers of $2$ above $2^{N-1}$ so we can take $m=N-1$. Now, for any fixed $N$, there are $2^N$ natural numbers $n$ such that $0leq n<2^N$ and $2^N$ different ways of choosing $epsilon_j(n)in{0,1}$ for each $j$ from $0$ to $N-1$. So, all $2^N$ of these binary expansions must have distinct sums, or else they would not be able to represent all $2^N$ of the different values of $n$.
This proves that for any $N$, a natural number $n$ has at most one binary expansion using powers of $2$ up to $2^{N-1}$. It follows that $n$ has only one binary expansion, up to adding $0$s at the start (since given two expansions of different lengths, you can always extend one by $0$s to make them the same length, and then they must become the same).
add a comment |
up vote
3
down vote
up vote
3
down vote
A very simple proof is by the pigeonhole principle. The key observation is that not only does any natural number $n$ have a binary expansion $$n = sum_{j=0}^m epsilon_j(n) 2^j,$$ but if $0leq n<2^N$ then we need no powers of $2$ above $2^{N-1}$ so we can take $m=N-1$. Now, for any fixed $N$, there are $2^N$ natural numbers $n$ such that $0leq n<2^N$ and $2^N$ different ways of choosing $epsilon_j(n)in{0,1}$ for each $j$ from $0$ to $N-1$. So, all $2^N$ of these binary expansions must have distinct sums, or else they would not be able to represent all $2^N$ of the different values of $n$.
This proves that for any $N$, a natural number $n$ has at most one binary expansion using powers of $2$ up to $2^{N-1}$. It follows that $n$ has only one binary expansion, up to adding $0$s at the start (since given two expansions of different lengths, you can always extend one by $0$s to make them the same length, and then they must become the same).
A very simple proof is by the pigeonhole principle. The key observation is that not only does any natural number $n$ have a binary expansion $$n = sum_{j=0}^m epsilon_j(n) 2^j,$$ but if $0leq n<2^N$ then we need no powers of $2$ above $2^{N-1}$ so we can take $m=N-1$. Now, for any fixed $N$, there are $2^N$ natural numbers $n$ such that $0leq n<2^N$ and $2^N$ different ways of choosing $epsilon_j(n)in{0,1}$ for each $j$ from $0$ to $N-1$. So, all $2^N$ of these binary expansions must have distinct sums, or else they would not be able to represent all $2^N$ of the different values of $n$.
This proves that for any $N$, a natural number $n$ has at most one binary expansion using powers of $2$ up to $2^{N-1}$. It follows that $n$ has only one binary expansion, up to adding $0$s at the start (since given two expansions of different lengths, you can always extend one by $0$s to make them the same length, and then they must become the same).
answered 2 days ago
Eric Wofsey
176k12202326
176k12202326
add a comment |
add a comment |
up vote
0
down vote
This argument is very basic but I think the notation is easy to follow:
Suppose a number has two different expansions ${a_i}$ and ${b_i}$. Then
$$ sum_{i=0}^m a_i(n) 2^i = sum_{i=0}^m b_i(n) 2^i $$ Break off the first term in both sums and you can get $$ a_o(n) - b_0(n) = 2sum_{i=1}^m (b_i(n)-a_i(n)) 2^{i-1}$$
The l.h.s can only be ($0-0$), ($0-1$), ($1-0$), or ($1-1$), and it must be divisible by $2$, so it must equal $0$, i.e. $a_0(n) = b_0(n)$. Then you can divide by the $2$ in front of the sum, and repeat the argument (or use induction) to get $a_i(n) = b_i(n)$ for all $i$.
add a comment |
up vote
0
down vote
This argument is very basic but I think the notation is easy to follow:
Suppose a number has two different expansions ${a_i}$ and ${b_i}$. Then
$$ sum_{i=0}^m a_i(n) 2^i = sum_{i=0}^m b_i(n) 2^i $$ Break off the first term in both sums and you can get $$ a_o(n) - b_0(n) = 2sum_{i=1}^m (b_i(n)-a_i(n)) 2^{i-1}$$
The l.h.s can only be ($0-0$), ($0-1$), ($1-0$), or ($1-1$), and it must be divisible by $2$, so it must equal $0$, i.e. $a_0(n) = b_0(n)$. Then you can divide by the $2$ in front of the sum, and repeat the argument (or use induction) to get $a_i(n) = b_i(n)$ for all $i$.
add a comment |
up vote
0
down vote
up vote
0
down vote
This argument is very basic but I think the notation is easy to follow:
Suppose a number has two different expansions ${a_i}$ and ${b_i}$. Then
$$ sum_{i=0}^m a_i(n) 2^i = sum_{i=0}^m b_i(n) 2^i $$ Break off the first term in both sums and you can get $$ a_o(n) - b_0(n) = 2sum_{i=1}^m (b_i(n)-a_i(n)) 2^{i-1}$$
The l.h.s can only be ($0-0$), ($0-1$), ($1-0$), or ($1-1$), and it must be divisible by $2$, so it must equal $0$, i.e. $a_0(n) = b_0(n)$. Then you can divide by the $2$ in front of the sum, and repeat the argument (or use induction) to get $a_i(n) = b_i(n)$ for all $i$.
This argument is very basic but I think the notation is easy to follow:
Suppose a number has two different expansions ${a_i}$ and ${b_i}$. Then
$$ sum_{i=0}^m a_i(n) 2^i = sum_{i=0}^m b_i(n) 2^i $$ Break off the first term in both sums and you can get $$ a_o(n) - b_0(n) = 2sum_{i=1}^m (b_i(n)-a_i(n)) 2^{i-1}$$
The l.h.s can only be ($0-0$), ($0-1$), ($1-0$), or ($1-1$), and it must be divisible by $2$, so it must equal $0$, i.e. $a_0(n) = b_0(n)$. Then you can divide by the $2$ in front of the sum, and repeat the argument (or use induction) to get $a_i(n) = b_i(n)$ for all $i$.
answered 2 days ago
JonathanZ
2,089613
2,089613
add a comment |
add a comment |
8
Have you tried induction?
– saulspatz
2 days ago
8
@stanleydodds Why are you answering in a comment?
– Arthur
2 days ago
4
@stanleydodds Outlines of answers are still answers. Even one-line hints belong in answer posts in my opinion
– Arthur
2 days ago
Index $j$ should start at $0$. If it starts at $1$ then RHS is even.
– drhab
2 days ago
3
As presented, such expansions are not unique. For uniqueness, you need to add the constraint that $$epsilon_m(n) = 1$$. Otherwise, an arbitrary number of additional leading 0 terms can be included to produce distinct expansions of the same n.
– John Bollinger
2 days ago