Picking marbles











up vote
7
down vote

favorite
2













We have 15 urns each of them having a different number of marbles, from 1 to 15. We start by picking the same number of marbles from each of the urns we choose. We repeat the process until we have picked all marbles. What is the minimum number of days we can finish picking all marbles? Just to clarify that it is not necessary to pick marbles from EVERY urn.




I don't think I can make it in less than 5 moves (start by picking 6, then 4, then 3, then 2 and 1) but I am fairly sure it can be done in 4 or maybe less.



Any ideas?










share|cite|improve this question
























  • What do you mean by picking 6?
    – Akash Roy
    2 days ago















up vote
7
down vote

favorite
2













We have 15 urns each of them having a different number of marbles, from 1 to 15. We start by picking the same number of marbles from each of the urns we choose. We repeat the process until we have picked all marbles. What is the minimum number of days we can finish picking all marbles? Just to clarify that it is not necessary to pick marbles from EVERY urn.




I don't think I can make it in less than 5 moves (start by picking 6, then 4, then 3, then 2 and 1) but I am fairly sure it can be done in 4 or maybe less.



Any ideas?










share|cite|improve this question
























  • What do you mean by picking 6?
    – Akash Roy
    2 days ago













up vote
7
down vote

favorite
2









up vote
7
down vote

favorite
2






2






We have 15 urns each of them having a different number of marbles, from 1 to 15. We start by picking the same number of marbles from each of the urns we choose. We repeat the process until we have picked all marbles. What is the minimum number of days we can finish picking all marbles? Just to clarify that it is not necessary to pick marbles from EVERY urn.




I don't think I can make it in less than 5 moves (start by picking 6, then 4, then 3, then 2 and 1) but I am fairly sure it can be done in 4 or maybe less.



Any ideas?










share|cite|improve this question
















We have 15 urns each of them having a different number of marbles, from 1 to 15. We start by picking the same number of marbles from each of the urns we choose. We repeat the process until we have picked all marbles. What is the minimum number of days we can finish picking all marbles? Just to clarify that it is not necessary to pick marbles from EVERY urn.




I don't think I can make it in less than 5 moves (start by picking 6, then 4, then 3, then 2 and 1) but I am fairly sure it can be done in 4 or maybe less.



Any ideas?







combinatorics






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago

























asked 2 days ago









Reyansh Laghari

1515




1515












  • What do you mean by picking 6?
    – Akash Roy
    2 days ago


















  • What do you mean by picking 6?
    – Akash Roy
    2 days ago
















What do you mean by picking 6?
– Akash Roy
2 days ago




What do you mean by picking 6?
– Akash Roy
2 days ago










2 Answers
2






active

oldest

votes

















up vote
4
down vote



accepted










You can look at your urns as an array of 4 bit integers:
$0001_b$
$0010_b$
$0011_b$

...
$1111_b$



On every step you can set one bit to $0$ on every integer for which it isn't already 0. There are 4 bits so you can do it in 4 steps. If we go back to decimal, you're removing 8, then 4, then 2, then 1.



In fact we can also prove that $n$ is the minimum number of steps for $n$-digit urns through a recursion on the number of digits.






share|cite|improve this answer






























    up vote
    3
    down vote













    It is possible in 4 days:



    First day you reduce the number of balls by 8 in urns with at least 8 balls. So now each urn has at most 7 balls.



    Second day you reduce the number of balls by 4 in urns with at least 4 balls. So now each urn has at most 3 balls.



    Third day you reduce the number of balls by 2 in urns with at least 2 balls. So now each urn has at most 1 ball.



    Last day you took balls from all the nonemty urns.






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015813%2fpicking-marbles%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      4
      down vote



      accepted










      You can look at your urns as an array of 4 bit integers:
      $0001_b$
      $0010_b$
      $0011_b$

      ...
      $1111_b$



      On every step you can set one bit to $0$ on every integer for which it isn't already 0. There are 4 bits so you can do it in 4 steps. If we go back to decimal, you're removing 8, then 4, then 2, then 1.



      In fact we can also prove that $n$ is the minimum number of steps for $n$-digit urns through a recursion on the number of digits.






      share|cite|improve this answer



























        up vote
        4
        down vote



        accepted










        You can look at your urns as an array of 4 bit integers:
        $0001_b$
        $0010_b$
        $0011_b$

        ...
        $1111_b$



        On every step you can set one bit to $0$ on every integer for which it isn't already 0. There are 4 bits so you can do it in 4 steps. If we go back to decimal, you're removing 8, then 4, then 2, then 1.



        In fact we can also prove that $n$ is the minimum number of steps for $n$-digit urns through a recursion on the number of digits.






        share|cite|improve this answer

























          up vote
          4
          down vote



          accepted







          up vote
          4
          down vote



          accepted






          You can look at your urns as an array of 4 bit integers:
          $0001_b$
          $0010_b$
          $0011_b$

          ...
          $1111_b$



          On every step you can set one bit to $0$ on every integer for which it isn't already 0. There are 4 bits so you can do it in 4 steps. If we go back to decimal, you're removing 8, then 4, then 2, then 1.



          In fact we can also prove that $n$ is the minimum number of steps for $n$-digit urns through a recursion on the number of digits.






          share|cite|improve this answer














          You can look at your urns as an array of 4 bit integers:
          $0001_b$
          $0010_b$
          $0011_b$

          ...
          $1111_b$



          On every step you can set one bit to $0$ on every integer for which it isn't already 0. There are 4 bits so you can do it in 4 steps. If we go back to decimal, you're removing 8, then 4, then 2, then 1.



          In fact we can also prove that $n$ is the minimum number of steps for $n$-digit urns through a recursion on the number of digits.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 2 days ago

























          answered 2 days ago









          Rchn

          49015




          49015






















              up vote
              3
              down vote













              It is possible in 4 days:



              First day you reduce the number of balls by 8 in urns with at least 8 balls. So now each urn has at most 7 balls.



              Second day you reduce the number of balls by 4 in urns with at least 4 balls. So now each urn has at most 3 balls.



              Third day you reduce the number of balls by 2 in urns with at least 2 balls. So now each urn has at most 1 ball.



              Last day you took balls from all the nonemty urns.






              share|cite|improve this answer

























                up vote
                3
                down vote













                It is possible in 4 days:



                First day you reduce the number of balls by 8 in urns with at least 8 balls. So now each urn has at most 7 balls.



                Second day you reduce the number of balls by 4 in urns with at least 4 balls. So now each urn has at most 3 balls.



                Third day you reduce the number of balls by 2 in urns with at least 2 balls. So now each urn has at most 1 ball.



                Last day you took balls from all the nonemty urns.






                share|cite|improve this answer























                  up vote
                  3
                  down vote










                  up vote
                  3
                  down vote









                  It is possible in 4 days:



                  First day you reduce the number of balls by 8 in urns with at least 8 balls. So now each urn has at most 7 balls.



                  Second day you reduce the number of balls by 4 in urns with at least 4 balls. So now each urn has at most 3 balls.



                  Third day you reduce the number of balls by 2 in urns with at least 2 balls. So now each urn has at most 1 ball.



                  Last day you took balls from all the nonemty urns.






                  share|cite|improve this answer












                  It is possible in 4 days:



                  First day you reduce the number of balls by 8 in urns with at least 8 balls. So now each urn has at most 7 balls.



                  Second day you reduce the number of balls by 4 in urns with at least 4 balls. So now each urn has at most 3 balls.



                  Third day you reduce the number of balls by 2 in urns with at least 2 balls. So now each urn has at most 1 ball.



                  Last day you took balls from all the nonemty urns.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 days ago









                  greedoid

                  35k114489




                  35k114489






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015813%2fpicking-marbles%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Morgemoulin

                      Scott Moir

                      Souastre