Are archimedean subextensions of ordered fields dense?
Let $E$ be an ordered field and let $F$ be a real closed subfield. We say that $E$ is $F$-archimedean if for each $ein E$ there is $xin F$ such that $-xle ele x$.
Is it true that if $E$ is $F$-archimedean then every interval in $E$ contains an element in $F$? That is, is it true that for every $e<e'$ in $E$ there is an element $xin F$ such that $e<x<e'$?
This is known if $F$ is the field of real algebraic numbers (in which case $E$ is an ordered subfield of $mathbb{R}$), and it seems to me that it should have an easy proof in the general case. However I cannot find neither an easy proof nor a counterexample.
ac.commutative-algebra ordered-fields
add a comment |
Let $E$ be an ordered field and let $F$ be a real closed subfield. We say that $E$ is $F$-archimedean if for each $ein E$ there is $xin F$ such that $-xle ele x$.
Is it true that if $E$ is $F$-archimedean then every interval in $E$ contains an element in $F$? That is, is it true that for every $e<e'$ in $E$ there is an element $xin F$ such that $e<x<e'$?
This is known if $F$ is the field of real algebraic numbers (in which case $E$ is an ordered subfield of $mathbb{R}$), and it seems to me that it should have an easy proof in the general case. However I cannot find neither an easy proof nor a counterexample.
ac.commutative-algebra ordered-fields
2
Have you tried $E = mathbb{Q}((infty)), F = mathbb{Q}((infty^2))$?
– user44191
Dec 17 at 19:49
1
What is $mathbb{Q}((infty))$? Do you mean $mathbb{Q}(t)$ with the order making $t$ an infinite positive element (I'm not sure this order can be extended to the Laurent series)?
– Denis Nardin
Dec 17 at 19:50
Yes, sorry, my idiocy.
– user44191
Dec 17 at 19:51
No need to be self-deprecating it's a good counterexample... Uhm there might in fact be no number between $t$ and $t+1$. Can you do a counterexample where $F$ is real closed? Sorry for changing the goal posts, I should have put it from the beginning since I was really thinking about that case.
– Denis Nardin
Dec 17 at 19:52
1
Try $E$ the real closure of $mathbb{Q}(x, y)$ with $x > mathbb{Q}, y > mathbb{Q}(x)$, and $F$ the real closure of $mathbb{Q}(y)$?
– user44191
Dec 17 at 20:00
add a comment |
Let $E$ be an ordered field and let $F$ be a real closed subfield. We say that $E$ is $F$-archimedean if for each $ein E$ there is $xin F$ such that $-xle ele x$.
Is it true that if $E$ is $F$-archimedean then every interval in $E$ contains an element in $F$? That is, is it true that for every $e<e'$ in $E$ there is an element $xin F$ such that $e<x<e'$?
This is known if $F$ is the field of real algebraic numbers (in which case $E$ is an ordered subfield of $mathbb{R}$), and it seems to me that it should have an easy proof in the general case. However I cannot find neither an easy proof nor a counterexample.
ac.commutative-algebra ordered-fields
Let $E$ be an ordered field and let $F$ be a real closed subfield. We say that $E$ is $F$-archimedean if for each $ein E$ there is $xin F$ such that $-xle ele x$.
Is it true that if $E$ is $F$-archimedean then every interval in $E$ contains an element in $F$? That is, is it true that for every $e<e'$ in $E$ there is an element $xin F$ such that $e<x<e'$?
This is known if $F$ is the field of real algebraic numbers (in which case $E$ is an ordered subfield of $mathbb{R}$), and it seems to me that it should have an easy proof in the general case. However I cannot find neither an easy proof nor a counterexample.
ac.commutative-algebra ordered-fields
ac.commutative-algebra ordered-fields
edited Dec 17 at 19:53
asked Dec 17 at 19:37
Denis Nardin
7,93223158
7,93223158
2
Have you tried $E = mathbb{Q}((infty)), F = mathbb{Q}((infty^2))$?
– user44191
Dec 17 at 19:49
1
What is $mathbb{Q}((infty))$? Do you mean $mathbb{Q}(t)$ with the order making $t$ an infinite positive element (I'm not sure this order can be extended to the Laurent series)?
– Denis Nardin
Dec 17 at 19:50
Yes, sorry, my idiocy.
– user44191
Dec 17 at 19:51
No need to be self-deprecating it's a good counterexample... Uhm there might in fact be no number between $t$ and $t+1$. Can you do a counterexample where $F$ is real closed? Sorry for changing the goal posts, I should have put it from the beginning since I was really thinking about that case.
– Denis Nardin
Dec 17 at 19:52
1
Try $E$ the real closure of $mathbb{Q}(x, y)$ with $x > mathbb{Q}, y > mathbb{Q}(x)$, and $F$ the real closure of $mathbb{Q}(y)$?
– user44191
Dec 17 at 20:00
add a comment |
2
Have you tried $E = mathbb{Q}((infty)), F = mathbb{Q}((infty^2))$?
– user44191
Dec 17 at 19:49
1
What is $mathbb{Q}((infty))$? Do you mean $mathbb{Q}(t)$ with the order making $t$ an infinite positive element (I'm not sure this order can be extended to the Laurent series)?
– Denis Nardin
Dec 17 at 19:50
Yes, sorry, my idiocy.
– user44191
Dec 17 at 19:51
No need to be self-deprecating it's a good counterexample... Uhm there might in fact be no number between $t$ and $t+1$. Can you do a counterexample where $F$ is real closed? Sorry for changing the goal posts, I should have put it from the beginning since I was really thinking about that case.
– Denis Nardin
Dec 17 at 19:52
1
Try $E$ the real closure of $mathbb{Q}(x, y)$ with $x > mathbb{Q}, y > mathbb{Q}(x)$, and $F$ the real closure of $mathbb{Q}(y)$?
– user44191
Dec 17 at 20:00
2
2
Have you tried $E = mathbb{Q}((infty)), F = mathbb{Q}((infty^2))$?
– user44191
Dec 17 at 19:49
Have you tried $E = mathbb{Q}((infty)), F = mathbb{Q}((infty^2))$?
– user44191
Dec 17 at 19:49
1
1
What is $mathbb{Q}((infty))$? Do you mean $mathbb{Q}(t)$ with the order making $t$ an infinite positive element (I'm not sure this order can be extended to the Laurent series)?
– Denis Nardin
Dec 17 at 19:50
What is $mathbb{Q}((infty))$? Do you mean $mathbb{Q}(t)$ with the order making $t$ an infinite positive element (I'm not sure this order can be extended to the Laurent series)?
– Denis Nardin
Dec 17 at 19:50
Yes, sorry, my idiocy.
– user44191
Dec 17 at 19:51
Yes, sorry, my idiocy.
– user44191
Dec 17 at 19:51
No need to be self-deprecating it's a good counterexample... Uhm there might in fact be no number between $t$ and $t+1$. Can you do a counterexample where $F$ is real closed? Sorry for changing the goal posts, I should have put it from the beginning since I was really thinking about that case.
– Denis Nardin
Dec 17 at 19:52
No need to be self-deprecating it's a good counterexample... Uhm there might in fact be no number between $t$ and $t+1$. Can you do a counterexample where $F$ is real closed? Sorry for changing the goal posts, I should have put it from the beginning since I was really thinking about that case.
– Denis Nardin
Dec 17 at 19:52
1
1
Try $E$ the real closure of $mathbb{Q}(x, y)$ with $x > mathbb{Q}, y > mathbb{Q}(x)$, and $F$ the real closure of $mathbb{Q}(y)$?
– user44191
Dec 17 at 20:00
Try $E$ the real closure of $mathbb{Q}(x, y)$ with $x > mathbb{Q}, y > mathbb{Q}(x)$, and $F$ the real closure of $mathbb{Q}(y)$?
– user44191
Dec 17 at 20:00
add a comment |
3 Answers
3
active
oldest
votes
Let $F$ be any real-closed field of uncountable cofinality. That is, every countable subset of $F$ is bounded. One can make such a field in a process of $omega_1$-many field extensions; alternatively, the ultrapower of $mathbb{R}$ by nonprincipal ultrafilter on $omega$ also has uncountable cofinality.
Let $E=F^omega/mu$ be an ultrapower of $F$ by a nonprincipal ultrafilter $mu$ on $omega$. We may identify $F$ with its canonical copy in $E$ using equivalence classes of constant functions $xmapsto [c_x]_mu$.
Since every function from $omega$ to $F$ is bounded by a constant function, it follows that $E$ is $F$-archimedean. But $F$ is not dense in $E$, since there are no constant functions between $[text{id}]_mu$ and $[text{id}+1]_mu$, where $text{id}:nmapsto n$, viewing $omegasubset F$.
1
Oh well... I guess that was too good to be true. Thanks for the answer, I'll wait till tomorrow to see if other interesting answers pop up and then accept it.
– Denis Nardin
Dec 17 at 20:08
1
Sure thing, no problem. I liked your question. The argument I give shows that no first-order property of the ordered field (like being real-closed) can have the consequence you want, since we can always find such fields of uncountable cofinality and then take an ultrapower.
– Joel David Hamkins
Dec 17 at 20:22
add a comment |
Let $E$ be the real closure of $mathbb{Q}(x, y) = (mathbb{Q}(x))(y)$, with order given by $x > mathbb{Q}$ and$y > mathbb{Q}(x)$. In other words, positivity on $mathbb{Q}(x, y)$ is determined first by degree in $y$, and then by degree in $x$. Then let $F$ be the real closure of $mathbb{Q}(y)$.
First, we prove that $E$ is $F$-archimedean. Let $e in E$. There is some $e' in mathbb{Q}(x, y)$ with $e' > e > -e'$. Then $e'$ has degree $n$ in $y$ for some $y$; let $f = y^{n + 1}$. By the order on $mathbb{Q}(x, y)$, we have $f > e' > e > -e' > -f$. Therefore $E$ is $F$-archimedean.
On the other hand, clearly, there is no element of $F$ between $x$ and $x + 1$.
1
Thank you for your answer! Now I'm going to have a hard time deciding which one to accept :)
– Denis Nardin
Dec 17 at 20:35
1
I ended up accepting JDH's answer because it provides me with a "machine" to generate counterexamples to similar statements, but your simple answer was very appreciated (and possibly shows that I hadn't thought through the situation as much as I thought...)
– Denis Nardin
Dec 18 at 22:37
add a comment |
This is similar to user44191's answer but I want to put the emphasis on the fact that there is no reason that the cofinality of $F$ in $E$ (which is what ou call [$E$ is $F$-archimedean]) imply the density of $F$ in $E$.
Indeed, if $F$ is any non-archimedean ordered field, then the field $F(t)$ can be equipped with an order where $t$ is positive infinite but smaller than any positive infinite element of $F$. Thus $F$ is cofinal in $F(t)$ but not dense in it since no element of $F$ is close to $t$. To do so, say that a fraction $frac{P(t)}{Q(t)}$ is positive if $P(t)$ and $Q(t)$ have the same sign, where the sign of a polynomial $R(t)$ is positive if $R(s)$ is positive for sufficiently large finite element $s$ of $F$.
This is a special case of filling a cut in an ordered field using a simple extension.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f318901%2fare-archimedean-subextensions-of-ordered-fields-dense%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Let $F$ be any real-closed field of uncountable cofinality. That is, every countable subset of $F$ is bounded. One can make such a field in a process of $omega_1$-many field extensions; alternatively, the ultrapower of $mathbb{R}$ by nonprincipal ultrafilter on $omega$ also has uncountable cofinality.
Let $E=F^omega/mu$ be an ultrapower of $F$ by a nonprincipal ultrafilter $mu$ on $omega$. We may identify $F$ with its canonical copy in $E$ using equivalence classes of constant functions $xmapsto [c_x]_mu$.
Since every function from $omega$ to $F$ is bounded by a constant function, it follows that $E$ is $F$-archimedean. But $F$ is not dense in $E$, since there are no constant functions between $[text{id}]_mu$ and $[text{id}+1]_mu$, where $text{id}:nmapsto n$, viewing $omegasubset F$.
1
Oh well... I guess that was too good to be true. Thanks for the answer, I'll wait till tomorrow to see if other interesting answers pop up and then accept it.
– Denis Nardin
Dec 17 at 20:08
1
Sure thing, no problem. I liked your question. The argument I give shows that no first-order property of the ordered field (like being real-closed) can have the consequence you want, since we can always find such fields of uncountable cofinality and then take an ultrapower.
– Joel David Hamkins
Dec 17 at 20:22
add a comment |
Let $F$ be any real-closed field of uncountable cofinality. That is, every countable subset of $F$ is bounded. One can make such a field in a process of $omega_1$-many field extensions; alternatively, the ultrapower of $mathbb{R}$ by nonprincipal ultrafilter on $omega$ also has uncountable cofinality.
Let $E=F^omega/mu$ be an ultrapower of $F$ by a nonprincipal ultrafilter $mu$ on $omega$. We may identify $F$ with its canonical copy in $E$ using equivalence classes of constant functions $xmapsto [c_x]_mu$.
Since every function from $omega$ to $F$ is bounded by a constant function, it follows that $E$ is $F$-archimedean. But $F$ is not dense in $E$, since there are no constant functions between $[text{id}]_mu$ and $[text{id}+1]_mu$, where $text{id}:nmapsto n$, viewing $omegasubset F$.
1
Oh well... I guess that was too good to be true. Thanks for the answer, I'll wait till tomorrow to see if other interesting answers pop up and then accept it.
– Denis Nardin
Dec 17 at 20:08
1
Sure thing, no problem. I liked your question. The argument I give shows that no first-order property of the ordered field (like being real-closed) can have the consequence you want, since we can always find such fields of uncountable cofinality and then take an ultrapower.
– Joel David Hamkins
Dec 17 at 20:22
add a comment |
Let $F$ be any real-closed field of uncountable cofinality. That is, every countable subset of $F$ is bounded. One can make such a field in a process of $omega_1$-many field extensions; alternatively, the ultrapower of $mathbb{R}$ by nonprincipal ultrafilter on $omega$ also has uncountable cofinality.
Let $E=F^omega/mu$ be an ultrapower of $F$ by a nonprincipal ultrafilter $mu$ on $omega$. We may identify $F$ with its canonical copy in $E$ using equivalence classes of constant functions $xmapsto [c_x]_mu$.
Since every function from $omega$ to $F$ is bounded by a constant function, it follows that $E$ is $F$-archimedean. But $F$ is not dense in $E$, since there are no constant functions between $[text{id}]_mu$ and $[text{id}+1]_mu$, where $text{id}:nmapsto n$, viewing $omegasubset F$.
Let $F$ be any real-closed field of uncountable cofinality. That is, every countable subset of $F$ is bounded. One can make such a field in a process of $omega_1$-many field extensions; alternatively, the ultrapower of $mathbb{R}$ by nonprincipal ultrafilter on $omega$ also has uncountable cofinality.
Let $E=F^omega/mu$ be an ultrapower of $F$ by a nonprincipal ultrafilter $mu$ on $omega$. We may identify $F$ with its canonical copy in $E$ using equivalence classes of constant functions $xmapsto [c_x]_mu$.
Since every function from $omega$ to $F$ is bounded by a constant function, it follows that $E$ is $F$-archimedean. But $F$ is not dense in $E$, since there are no constant functions between $[text{id}]_mu$ and $[text{id}+1]_mu$, where $text{id}:nmapsto n$, viewing $omegasubset F$.
edited Dec 17 at 20:09
answered Dec 17 at 20:04
Joel David Hamkins
164k25501864
164k25501864
1
Oh well... I guess that was too good to be true. Thanks for the answer, I'll wait till tomorrow to see if other interesting answers pop up and then accept it.
– Denis Nardin
Dec 17 at 20:08
1
Sure thing, no problem. I liked your question. The argument I give shows that no first-order property of the ordered field (like being real-closed) can have the consequence you want, since we can always find such fields of uncountable cofinality and then take an ultrapower.
– Joel David Hamkins
Dec 17 at 20:22
add a comment |
1
Oh well... I guess that was too good to be true. Thanks for the answer, I'll wait till tomorrow to see if other interesting answers pop up and then accept it.
– Denis Nardin
Dec 17 at 20:08
1
Sure thing, no problem. I liked your question. The argument I give shows that no first-order property of the ordered field (like being real-closed) can have the consequence you want, since we can always find such fields of uncountable cofinality and then take an ultrapower.
– Joel David Hamkins
Dec 17 at 20:22
1
1
Oh well... I guess that was too good to be true. Thanks for the answer, I'll wait till tomorrow to see if other interesting answers pop up and then accept it.
– Denis Nardin
Dec 17 at 20:08
Oh well... I guess that was too good to be true. Thanks for the answer, I'll wait till tomorrow to see if other interesting answers pop up and then accept it.
– Denis Nardin
Dec 17 at 20:08
1
1
Sure thing, no problem. I liked your question. The argument I give shows that no first-order property of the ordered field (like being real-closed) can have the consequence you want, since we can always find such fields of uncountable cofinality and then take an ultrapower.
– Joel David Hamkins
Dec 17 at 20:22
Sure thing, no problem. I liked your question. The argument I give shows that no first-order property of the ordered field (like being real-closed) can have the consequence you want, since we can always find such fields of uncountable cofinality and then take an ultrapower.
– Joel David Hamkins
Dec 17 at 20:22
add a comment |
Let $E$ be the real closure of $mathbb{Q}(x, y) = (mathbb{Q}(x))(y)$, with order given by $x > mathbb{Q}$ and$y > mathbb{Q}(x)$. In other words, positivity on $mathbb{Q}(x, y)$ is determined first by degree in $y$, and then by degree in $x$. Then let $F$ be the real closure of $mathbb{Q}(y)$.
First, we prove that $E$ is $F$-archimedean. Let $e in E$. There is some $e' in mathbb{Q}(x, y)$ with $e' > e > -e'$. Then $e'$ has degree $n$ in $y$ for some $y$; let $f = y^{n + 1}$. By the order on $mathbb{Q}(x, y)$, we have $f > e' > e > -e' > -f$. Therefore $E$ is $F$-archimedean.
On the other hand, clearly, there is no element of $F$ between $x$ and $x + 1$.
1
Thank you for your answer! Now I'm going to have a hard time deciding which one to accept :)
– Denis Nardin
Dec 17 at 20:35
1
I ended up accepting JDH's answer because it provides me with a "machine" to generate counterexamples to similar statements, but your simple answer was very appreciated (and possibly shows that I hadn't thought through the situation as much as I thought...)
– Denis Nardin
Dec 18 at 22:37
add a comment |
Let $E$ be the real closure of $mathbb{Q}(x, y) = (mathbb{Q}(x))(y)$, with order given by $x > mathbb{Q}$ and$y > mathbb{Q}(x)$. In other words, positivity on $mathbb{Q}(x, y)$ is determined first by degree in $y$, and then by degree in $x$. Then let $F$ be the real closure of $mathbb{Q}(y)$.
First, we prove that $E$ is $F$-archimedean. Let $e in E$. There is some $e' in mathbb{Q}(x, y)$ with $e' > e > -e'$. Then $e'$ has degree $n$ in $y$ for some $y$; let $f = y^{n + 1}$. By the order on $mathbb{Q}(x, y)$, we have $f > e' > e > -e' > -f$. Therefore $E$ is $F$-archimedean.
On the other hand, clearly, there is no element of $F$ between $x$ and $x + 1$.
1
Thank you for your answer! Now I'm going to have a hard time deciding which one to accept :)
– Denis Nardin
Dec 17 at 20:35
1
I ended up accepting JDH's answer because it provides me with a "machine" to generate counterexamples to similar statements, but your simple answer was very appreciated (and possibly shows that I hadn't thought through the situation as much as I thought...)
– Denis Nardin
Dec 18 at 22:37
add a comment |
Let $E$ be the real closure of $mathbb{Q}(x, y) = (mathbb{Q}(x))(y)$, with order given by $x > mathbb{Q}$ and$y > mathbb{Q}(x)$. In other words, positivity on $mathbb{Q}(x, y)$ is determined first by degree in $y$, and then by degree in $x$. Then let $F$ be the real closure of $mathbb{Q}(y)$.
First, we prove that $E$ is $F$-archimedean. Let $e in E$. There is some $e' in mathbb{Q}(x, y)$ with $e' > e > -e'$. Then $e'$ has degree $n$ in $y$ for some $y$; let $f = y^{n + 1}$. By the order on $mathbb{Q}(x, y)$, we have $f > e' > e > -e' > -f$. Therefore $E$ is $F$-archimedean.
On the other hand, clearly, there is no element of $F$ between $x$ and $x + 1$.
Let $E$ be the real closure of $mathbb{Q}(x, y) = (mathbb{Q}(x))(y)$, with order given by $x > mathbb{Q}$ and$y > mathbb{Q}(x)$. In other words, positivity on $mathbb{Q}(x, y)$ is determined first by degree in $y$, and then by degree in $x$. Then let $F$ be the real closure of $mathbb{Q}(y)$.
First, we prove that $E$ is $F$-archimedean. Let $e in E$. There is some $e' in mathbb{Q}(x, y)$ with $e' > e > -e'$. Then $e'$ has degree $n$ in $y$ for some $y$; let $f = y^{n + 1}$. By the order on $mathbb{Q}(x, y)$, we have $f > e' > e > -e' > -f$. Therefore $E$ is $F$-archimedean.
On the other hand, clearly, there is no element of $F$ between $x$ and $x + 1$.
answered Dec 17 at 20:22
user44191
2,7881227
2,7881227
1
Thank you for your answer! Now I'm going to have a hard time deciding which one to accept :)
– Denis Nardin
Dec 17 at 20:35
1
I ended up accepting JDH's answer because it provides me with a "machine" to generate counterexamples to similar statements, but your simple answer was very appreciated (and possibly shows that I hadn't thought through the situation as much as I thought...)
– Denis Nardin
Dec 18 at 22:37
add a comment |
1
Thank you for your answer! Now I'm going to have a hard time deciding which one to accept :)
– Denis Nardin
Dec 17 at 20:35
1
I ended up accepting JDH's answer because it provides me with a "machine" to generate counterexamples to similar statements, but your simple answer was very appreciated (and possibly shows that I hadn't thought through the situation as much as I thought...)
– Denis Nardin
Dec 18 at 22:37
1
1
Thank you for your answer! Now I'm going to have a hard time deciding which one to accept :)
– Denis Nardin
Dec 17 at 20:35
Thank you for your answer! Now I'm going to have a hard time deciding which one to accept :)
– Denis Nardin
Dec 17 at 20:35
1
1
I ended up accepting JDH's answer because it provides me with a "machine" to generate counterexamples to similar statements, but your simple answer was very appreciated (and possibly shows that I hadn't thought through the situation as much as I thought...)
– Denis Nardin
Dec 18 at 22:37
I ended up accepting JDH's answer because it provides me with a "machine" to generate counterexamples to similar statements, but your simple answer was very appreciated (and possibly shows that I hadn't thought through the situation as much as I thought...)
– Denis Nardin
Dec 18 at 22:37
add a comment |
This is similar to user44191's answer but I want to put the emphasis on the fact that there is no reason that the cofinality of $F$ in $E$ (which is what ou call [$E$ is $F$-archimedean]) imply the density of $F$ in $E$.
Indeed, if $F$ is any non-archimedean ordered field, then the field $F(t)$ can be equipped with an order where $t$ is positive infinite but smaller than any positive infinite element of $F$. Thus $F$ is cofinal in $F(t)$ but not dense in it since no element of $F$ is close to $t$. To do so, say that a fraction $frac{P(t)}{Q(t)}$ is positive if $P(t)$ and $Q(t)$ have the same sign, where the sign of a polynomial $R(t)$ is positive if $R(s)$ is positive for sufficiently large finite element $s$ of $F$.
This is a special case of filling a cut in an ordered field using a simple extension.
add a comment |
This is similar to user44191's answer but I want to put the emphasis on the fact that there is no reason that the cofinality of $F$ in $E$ (which is what ou call [$E$ is $F$-archimedean]) imply the density of $F$ in $E$.
Indeed, if $F$ is any non-archimedean ordered field, then the field $F(t)$ can be equipped with an order where $t$ is positive infinite but smaller than any positive infinite element of $F$. Thus $F$ is cofinal in $F(t)$ but not dense in it since no element of $F$ is close to $t$. To do so, say that a fraction $frac{P(t)}{Q(t)}$ is positive if $P(t)$ and $Q(t)$ have the same sign, where the sign of a polynomial $R(t)$ is positive if $R(s)$ is positive for sufficiently large finite element $s$ of $F$.
This is a special case of filling a cut in an ordered field using a simple extension.
add a comment |
This is similar to user44191's answer but I want to put the emphasis on the fact that there is no reason that the cofinality of $F$ in $E$ (which is what ou call [$E$ is $F$-archimedean]) imply the density of $F$ in $E$.
Indeed, if $F$ is any non-archimedean ordered field, then the field $F(t)$ can be equipped with an order where $t$ is positive infinite but smaller than any positive infinite element of $F$. Thus $F$ is cofinal in $F(t)$ but not dense in it since no element of $F$ is close to $t$. To do so, say that a fraction $frac{P(t)}{Q(t)}$ is positive if $P(t)$ and $Q(t)$ have the same sign, where the sign of a polynomial $R(t)$ is positive if $R(s)$ is positive for sufficiently large finite element $s$ of $F$.
This is a special case of filling a cut in an ordered field using a simple extension.
This is similar to user44191's answer but I want to put the emphasis on the fact that there is no reason that the cofinality of $F$ in $E$ (which is what ou call [$E$ is $F$-archimedean]) imply the density of $F$ in $E$.
Indeed, if $F$ is any non-archimedean ordered field, then the field $F(t)$ can be equipped with an order where $t$ is positive infinite but smaller than any positive infinite element of $F$. Thus $F$ is cofinal in $F(t)$ but not dense in it since no element of $F$ is close to $t$. To do so, say that a fraction $frac{P(t)}{Q(t)}$ is positive if $P(t)$ and $Q(t)$ have the same sign, where the sign of a polynomial $R(t)$ is positive if $R(s)$ is positive for sufficiently large finite element $s$ of $F$.
This is a special case of filling a cut in an ordered field using a simple extension.
answered Dec 19 at 14:53
nombre
7281612
7281612
add a comment |
add a comment |
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f318901%2fare-archimedean-subextensions-of-ordered-fields-dense%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
Have you tried $E = mathbb{Q}((infty)), F = mathbb{Q}((infty^2))$?
– user44191
Dec 17 at 19:49
1
What is $mathbb{Q}((infty))$? Do you mean $mathbb{Q}(t)$ with the order making $t$ an infinite positive element (I'm not sure this order can be extended to the Laurent series)?
– Denis Nardin
Dec 17 at 19:50
Yes, sorry, my idiocy.
– user44191
Dec 17 at 19:51
No need to be self-deprecating it's a good counterexample... Uhm there might in fact be no number between $t$ and $t+1$. Can you do a counterexample where $F$ is real closed? Sorry for changing the goal posts, I should have put it from the beginning since I was really thinking about that case.
– Denis Nardin
Dec 17 at 19:52
1
Try $E$ the real closure of $mathbb{Q}(x, y)$ with $x > mathbb{Q}, y > mathbb{Q}(x)$, and $F$ the real closure of $mathbb{Q}(y)$?
– user44191
Dec 17 at 20:00