Definite Integral in functional relation format
If $$2f(x) + f(-x) = frac{1}{x}sinBiggl(x-frac{1}{x}Biggl)$$ then find the value of
$$int_{frac{1}{e}}^ef(x)dx$$(its not given that the function is odd or even)
I don't know where to start on this one I'm not much experienced in solving functional relations like these and I'm not even able to come up with an approach to solve it can someone help
calculus definite-integrals functional-equations
add a comment |
If $$2f(x) + f(-x) = frac{1}{x}sinBiggl(x-frac{1}{x}Biggl)$$ then find the value of
$$int_{frac{1}{e}}^ef(x)dx$$(its not given that the function is odd or even)
I don't know where to start on this one I'm not much experienced in solving functional relations like these and I'm not even able to come up with an approach to solve it can someone help
calculus definite-integrals functional-equations
add a comment |
If $$2f(x) + f(-x) = frac{1}{x}sinBiggl(x-frac{1}{x}Biggl)$$ then find the value of
$$int_{frac{1}{e}}^ef(x)dx$$(its not given that the function is odd or even)
I don't know where to start on this one I'm not much experienced in solving functional relations like these and I'm not even able to come up with an approach to solve it can someone help
calculus definite-integrals functional-equations
If $$2f(x) + f(-x) = frac{1}{x}sinBiggl(x-frac{1}{x}Biggl)$$ then find the value of
$$int_{frac{1}{e}}^ef(x)dx$$(its not given that the function is odd or even)
I don't know where to start on this one I'm not much experienced in solving functional relations like these and I'm not even able to come up with an approach to solve it can someone help
calculus definite-integrals functional-equations
calculus definite-integrals functional-equations
edited Dec 17 at 18:44
Rebellos
14.4k31245
14.4k31245
asked Dec 17 at 18:43
aditya prakash
423
423
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$textbf{Hint:}$ $2f(x) + f(-x)=2f(-x) + f(x)implies f(-x)=f(x)$. So $$f(x)=dfrac{1}{3x}sinleft(x-dfrac{1}{x}right)$$
$$fleft(dfrac1xright)=-x^2f(x) label{a}tag{1}$$
$$displaystyleint_frac1e^ef(x)dx=int_frac1e^1f(x)dx:+:int_1^ef(x)dx$$
For $1^{st}$ integral, $y=dfrac1x implies dfrac{-dy}{y^2}=dx$ with limits $dfrac1e=x=dfrac1yimplies y=e$
to $1=x=dfrac1yimplies y=1$.
$$implies int_frac1e^1f(x)dx=displaystyleint_e^1 fleft(dfrac1yright)dfrac{-dy}{y^2}=int_1^e fleft(dfrac1yright)dfrac{dy}{y^2}overset{(1)}{=}int_1^e -y^2f(y)dfrac{dy}{y^2}=-int_1^e f(y)dy$$
Hence $$displaystyleint_frac1e^ef(x)dx=0$$
Substitute $x$ as $-x$ in your original equation. Assuming you know $sin(-x)=-sin x$.
– Yadati Kiran
Dec 17 at 18:58
Yeah I got it thanks attempting it again
– aditya prakash
Dec 17 at 19:00
Stuck with the integration now 😭
– aditya prakash
Dec 17 at 19:12
add a comment |
The integral is zero.
Proof:
With $g(x) = frac{1}{x}sin(x-frac{1}{x})$ we have $2f(x)+f(-x) = g(x) = g(-x) = 2f(-x) + f(x)implies f(-x)=f(x)$ which gives
$$f(x) = frac{1}{3 x}sin(x-frac{1}{x})$$
Now the integral can be split up as
$$i = int_{frac{1}{e}}^ef(x),dx =int_{frac{1}{e}}^1f(x),dx+int_1^ef(x),dx=i_1 + i_2$$
Substituting $xto frac{1}{y}$ i.e. $dx to - frac{1}{y^2}dy$ in the second integral gives
$$i_2=int_1^frac{1}{e}f(x),dx = int_{frac{1}{e}}^1 frac{1}{y^2}f(frac{1}{y}),dy=int_{frac{1}{e}}^1 frac{1}{y^2}frac{1}{3frac{1}{y}}sin(frac{1}{y}-y),dy\=int_{frac{1}{e}}^1 frac{1}{3 y}sin(frac{1}{y}-y),dy=-int_{frac{1}{e}}^1 frac{1}{3 y}sin(y-frac{1}{y}),dy=- int_{frac{1}{e}}^1f(y),dy= - i_1 $$
Hence the integral in question is $i = i_1 +(- i_1) = 0$
Q.E.D.
Remark: from the proof it is clear that "$e$" can be any positive real number.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044284%2fdefinite-integral-in-functional-relation-format%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$textbf{Hint:}$ $2f(x) + f(-x)=2f(-x) + f(x)implies f(-x)=f(x)$. So $$f(x)=dfrac{1}{3x}sinleft(x-dfrac{1}{x}right)$$
$$fleft(dfrac1xright)=-x^2f(x) label{a}tag{1}$$
$$displaystyleint_frac1e^ef(x)dx=int_frac1e^1f(x)dx:+:int_1^ef(x)dx$$
For $1^{st}$ integral, $y=dfrac1x implies dfrac{-dy}{y^2}=dx$ with limits $dfrac1e=x=dfrac1yimplies y=e$
to $1=x=dfrac1yimplies y=1$.
$$implies int_frac1e^1f(x)dx=displaystyleint_e^1 fleft(dfrac1yright)dfrac{-dy}{y^2}=int_1^e fleft(dfrac1yright)dfrac{dy}{y^2}overset{(1)}{=}int_1^e -y^2f(y)dfrac{dy}{y^2}=-int_1^e f(y)dy$$
Hence $$displaystyleint_frac1e^ef(x)dx=0$$
Substitute $x$ as $-x$ in your original equation. Assuming you know $sin(-x)=-sin x$.
– Yadati Kiran
Dec 17 at 18:58
Yeah I got it thanks attempting it again
– aditya prakash
Dec 17 at 19:00
Stuck with the integration now 😭
– aditya prakash
Dec 17 at 19:12
add a comment |
$textbf{Hint:}$ $2f(x) + f(-x)=2f(-x) + f(x)implies f(-x)=f(x)$. So $$f(x)=dfrac{1}{3x}sinleft(x-dfrac{1}{x}right)$$
$$fleft(dfrac1xright)=-x^2f(x) label{a}tag{1}$$
$$displaystyleint_frac1e^ef(x)dx=int_frac1e^1f(x)dx:+:int_1^ef(x)dx$$
For $1^{st}$ integral, $y=dfrac1x implies dfrac{-dy}{y^2}=dx$ with limits $dfrac1e=x=dfrac1yimplies y=e$
to $1=x=dfrac1yimplies y=1$.
$$implies int_frac1e^1f(x)dx=displaystyleint_e^1 fleft(dfrac1yright)dfrac{-dy}{y^2}=int_1^e fleft(dfrac1yright)dfrac{dy}{y^2}overset{(1)}{=}int_1^e -y^2f(y)dfrac{dy}{y^2}=-int_1^e f(y)dy$$
Hence $$displaystyleint_frac1e^ef(x)dx=0$$
Substitute $x$ as $-x$ in your original equation. Assuming you know $sin(-x)=-sin x$.
– Yadati Kiran
Dec 17 at 18:58
Yeah I got it thanks attempting it again
– aditya prakash
Dec 17 at 19:00
Stuck with the integration now 😭
– aditya prakash
Dec 17 at 19:12
add a comment |
$textbf{Hint:}$ $2f(x) + f(-x)=2f(-x) + f(x)implies f(-x)=f(x)$. So $$f(x)=dfrac{1}{3x}sinleft(x-dfrac{1}{x}right)$$
$$fleft(dfrac1xright)=-x^2f(x) label{a}tag{1}$$
$$displaystyleint_frac1e^ef(x)dx=int_frac1e^1f(x)dx:+:int_1^ef(x)dx$$
For $1^{st}$ integral, $y=dfrac1x implies dfrac{-dy}{y^2}=dx$ with limits $dfrac1e=x=dfrac1yimplies y=e$
to $1=x=dfrac1yimplies y=1$.
$$implies int_frac1e^1f(x)dx=displaystyleint_e^1 fleft(dfrac1yright)dfrac{-dy}{y^2}=int_1^e fleft(dfrac1yright)dfrac{dy}{y^2}overset{(1)}{=}int_1^e -y^2f(y)dfrac{dy}{y^2}=-int_1^e f(y)dy$$
Hence $$displaystyleint_frac1e^ef(x)dx=0$$
$textbf{Hint:}$ $2f(x) + f(-x)=2f(-x) + f(x)implies f(-x)=f(x)$. So $$f(x)=dfrac{1}{3x}sinleft(x-dfrac{1}{x}right)$$
$$fleft(dfrac1xright)=-x^2f(x) label{a}tag{1}$$
$$displaystyleint_frac1e^ef(x)dx=int_frac1e^1f(x)dx:+:int_1^ef(x)dx$$
For $1^{st}$ integral, $y=dfrac1x implies dfrac{-dy}{y^2}=dx$ with limits $dfrac1e=x=dfrac1yimplies y=e$
to $1=x=dfrac1yimplies y=1$.
$$implies int_frac1e^1f(x)dx=displaystyleint_e^1 fleft(dfrac1yright)dfrac{-dy}{y^2}=int_1^e fleft(dfrac1yright)dfrac{dy}{y^2}overset{(1)}{=}int_1^e -y^2f(y)dfrac{dy}{y^2}=-int_1^e f(y)dy$$
Hence $$displaystyleint_frac1e^ef(x)dx=0$$
edited Dec 17 at 20:17
answered Dec 17 at 18:46
Yadati Kiran
1,690619
1,690619
Substitute $x$ as $-x$ in your original equation. Assuming you know $sin(-x)=-sin x$.
– Yadati Kiran
Dec 17 at 18:58
Yeah I got it thanks attempting it again
– aditya prakash
Dec 17 at 19:00
Stuck with the integration now 😭
– aditya prakash
Dec 17 at 19:12
add a comment |
Substitute $x$ as $-x$ in your original equation. Assuming you know $sin(-x)=-sin x$.
– Yadati Kiran
Dec 17 at 18:58
Yeah I got it thanks attempting it again
– aditya prakash
Dec 17 at 19:00
Stuck with the integration now 😭
– aditya prakash
Dec 17 at 19:12
Substitute $x$ as $-x$ in your original equation. Assuming you know $sin(-x)=-sin x$.
– Yadati Kiran
Dec 17 at 18:58
Substitute $x$ as $-x$ in your original equation. Assuming you know $sin(-x)=-sin x$.
– Yadati Kiran
Dec 17 at 18:58
Yeah I got it thanks attempting it again
– aditya prakash
Dec 17 at 19:00
Yeah I got it thanks attempting it again
– aditya prakash
Dec 17 at 19:00
Stuck with the integration now 😭
– aditya prakash
Dec 17 at 19:12
Stuck with the integration now 😭
– aditya prakash
Dec 17 at 19:12
add a comment |
The integral is zero.
Proof:
With $g(x) = frac{1}{x}sin(x-frac{1}{x})$ we have $2f(x)+f(-x) = g(x) = g(-x) = 2f(-x) + f(x)implies f(-x)=f(x)$ which gives
$$f(x) = frac{1}{3 x}sin(x-frac{1}{x})$$
Now the integral can be split up as
$$i = int_{frac{1}{e}}^ef(x),dx =int_{frac{1}{e}}^1f(x),dx+int_1^ef(x),dx=i_1 + i_2$$
Substituting $xto frac{1}{y}$ i.e. $dx to - frac{1}{y^2}dy$ in the second integral gives
$$i_2=int_1^frac{1}{e}f(x),dx = int_{frac{1}{e}}^1 frac{1}{y^2}f(frac{1}{y}),dy=int_{frac{1}{e}}^1 frac{1}{y^2}frac{1}{3frac{1}{y}}sin(frac{1}{y}-y),dy\=int_{frac{1}{e}}^1 frac{1}{3 y}sin(frac{1}{y}-y),dy=-int_{frac{1}{e}}^1 frac{1}{3 y}sin(y-frac{1}{y}),dy=- int_{frac{1}{e}}^1f(y),dy= - i_1 $$
Hence the integral in question is $i = i_1 +(- i_1) = 0$
Q.E.D.
Remark: from the proof it is clear that "$e$" can be any positive real number.
add a comment |
The integral is zero.
Proof:
With $g(x) = frac{1}{x}sin(x-frac{1}{x})$ we have $2f(x)+f(-x) = g(x) = g(-x) = 2f(-x) + f(x)implies f(-x)=f(x)$ which gives
$$f(x) = frac{1}{3 x}sin(x-frac{1}{x})$$
Now the integral can be split up as
$$i = int_{frac{1}{e}}^ef(x),dx =int_{frac{1}{e}}^1f(x),dx+int_1^ef(x),dx=i_1 + i_2$$
Substituting $xto frac{1}{y}$ i.e. $dx to - frac{1}{y^2}dy$ in the second integral gives
$$i_2=int_1^frac{1}{e}f(x),dx = int_{frac{1}{e}}^1 frac{1}{y^2}f(frac{1}{y}),dy=int_{frac{1}{e}}^1 frac{1}{y^2}frac{1}{3frac{1}{y}}sin(frac{1}{y}-y),dy\=int_{frac{1}{e}}^1 frac{1}{3 y}sin(frac{1}{y}-y),dy=-int_{frac{1}{e}}^1 frac{1}{3 y}sin(y-frac{1}{y}),dy=- int_{frac{1}{e}}^1f(y),dy= - i_1 $$
Hence the integral in question is $i = i_1 +(- i_1) = 0$
Q.E.D.
Remark: from the proof it is clear that "$e$" can be any positive real number.
add a comment |
The integral is zero.
Proof:
With $g(x) = frac{1}{x}sin(x-frac{1}{x})$ we have $2f(x)+f(-x) = g(x) = g(-x) = 2f(-x) + f(x)implies f(-x)=f(x)$ which gives
$$f(x) = frac{1}{3 x}sin(x-frac{1}{x})$$
Now the integral can be split up as
$$i = int_{frac{1}{e}}^ef(x),dx =int_{frac{1}{e}}^1f(x),dx+int_1^ef(x),dx=i_1 + i_2$$
Substituting $xto frac{1}{y}$ i.e. $dx to - frac{1}{y^2}dy$ in the second integral gives
$$i_2=int_1^frac{1}{e}f(x),dx = int_{frac{1}{e}}^1 frac{1}{y^2}f(frac{1}{y}),dy=int_{frac{1}{e}}^1 frac{1}{y^2}frac{1}{3frac{1}{y}}sin(frac{1}{y}-y),dy\=int_{frac{1}{e}}^1 frac{1}{3 y}sin(frac{1}{y}-y),dy=-int_{frac{1}{e}}^1 frac{1}{3 y}sin(y-frac{1}{y}),dy=- int_{frac{1}{e}}^1f(y),dy= - i_1 $$
Hence the integral in question is $i = i_1 +(- i_1) = 0$
Q.E.D.
Remark: from the proof it is clear that "$e$" can be any positive real number.
The integral is zero.
Proof:
With $g(x) = frac{1}{x}sin(x-frac{1}{x})$ we have $2f(x)+f(-x) = g(x) = g(-x) = 2f(-x) + f(x)implies f(-x)=f(x)$ which gives
$$f(x) = frac{1}{3 x}sin(x-frac{1}{x})$$
Now the integral can be split up as
$$i = int_{frac{1}{e}}^ef(x),dx =int_{frac{1}{e}}^1f(x),dx+int_1^ef(x),dx=i_1 + i_2$$
Substituting $xto frac{1}{y}$ i.e. $dx to - frac{1}{y^2}dy$ in the second integral gives
$$i_2=int_1^frac{1}{e}f(x),dx = int_{frac{1}{e}}^1 frac{1}{y^2}f(frac{1}{y}),dy=int_{frac{1}{e}}^1 frac{1}{y^2}frac{1}{3frac{1}{y}}sin(frac{1}{y}-y),dy\=int_{frac{1}{e}}^1 frac{1}{3 y}sin(frac{1}{y}-y),dy=-int_{frac{1}{e}}^1 frac{1}{3 y}sin(y-frac{1}{y}),dy=- int_{frac{1}{e}}^1f(y),dy= - i_1 $$
Hence the integral in question is $i = i_1 +(- i_1) = 0$
Q.E.D.
Remark: from the proof it is clear that "$e$" can be any positive real number.
edited Dec 18 at 13:05
amWhy
191k28224439
191k28224439
answered Dec 17 at 19:47
Dr. Wolfgang Hintze
3,150617
3,150617
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044284%2fdefinite-integral-in-functional-relation-format%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown