Definite Integral in functional relation format












7














If $$2f(x) + f(-x) = frac{1}{x}sinBiggl(x-frac{1}{x}Biggl)$$ then find the value of
$$int_{frac{1}{e}}^ef(x)dx$$(its not given that the function is odd or even)
I don't know where to start on this one I'm not much experienced in solving functional relations like these and I'm not even able to come up with an approach to solve it can someone help










share|cite|improve this question





























    7














    If $$2f(x) + f(-x) = frac{1}{x}sinBiggl(x-frac{1}{x}Biggl)$$ then find the value of
    $$int_{frac{1}{e}}^ef(x)dx$$(its not given that the function is odd or even)
    I don't know where to start on this one I'm not much experienced in solving functional relations like these and I'm not even able to come up with an approach to solve it can someone help










    share|cite|improve this question



























      7












      7








      7


      1





      If $$2f(x) + f(-x) = frac{1}{x}sinBiggl(x-frac{1}{x}Biggl)$$ then find the value of
      $$int_{frac{1}{e}}^ef(x)dx$$(its not given that the function is odd or even)
      I don't know where to start on this one I'm not much experienced in solving functional relations like these and I'm not even able to come up with an approach to solve it can someone help










      share|cite|improve this question















      If $$2f(x) + f(-x) = frac{1}{x}sinBiggl(x-frac{1}{x}Biggl)$$ then find the value of
      $$int_{frac{1}{e}}^ef(x)dx$$(its not given that the function is odd or even)
      I don't know where to start on this one I'm not much experienced in solving functional relations like these and I'm not even able to come up with an approach to solve it can someone help







      calculus definite-integrals functional-equations






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 17 at 18:44









      Rebellos

      14.4k31245




      14.4k31245










      asked Dec 17 at 18:43









      aditya prakash

      423




      423






















          2 Answers
          2






          active

          oldest

          votes


















          8














          $textbf{Hint:}$ $2f(x) + f(-x)=2f(-x) + f(x)implies f(-x)=f(x)$. So $$f(x)=dfrac{1}{3x}sinleft(x-dfrac{1}{x}right)$$
          $$fleft(dfrac1xright)=-x^2f(x) label{a}tag{1}$$



          $$displaystyleint_frac1e^ef(x)dx=int_frac1e^1f(x)dx:+:int_1^ef(x)dx$$



          For $1^{st}$ integral, $y=dfrac1x implies dfrac{-dy}{y^2}=dx$ with limits $dfrac1e=x=dfrac1yimplies y=e$



          to $1=x=dfrac1yimplies y=1$.



          $$implies int_frac1e^1f(x)dx=displaystyleint_e^1 fleft(dfrac1yright)dfrac{-dy}{y^2}=int_1^e fleft(dfrac1yright)dfrac{dy}{y^2}overset{(1)}{=}int_1^e -y^2f(y)dfrac{dy}{y^2}=-int_1^e f(y)dy$$



          Hence $$displaystyleint_frac1e^ef(x)dx=0$$






          share|cite|improve this answer























          • Substitute $x$ as $-x$ in your original equation. Assuming you know $sin(-x)=-sin x$.
            – Yadati Kiran
            Dec 17 at 18:58












          • Yeah I got it thanks attempting it again
            – aditya prakash
            Dec 17 at 19:00










          • Stuck with the integration now 😭
            – aditya prakash
            Dec 17 at 19:12



















          5














          The integral is zero.



          Proof:



          With $g(x) = frac{1}{x}sin(x-frac{1}{x})$ we have $2f(x)+f(-x) = g(x) = g(-x) = 2f(-x) + f(x)implies f(-x)=f(x)$ which gives



          $$f(x) = frac{1}{3 x}sin(x-frac{1}{x})$$



          Now the integral can be split up as



          $$i = int_{frac{1}{e}}^ef(x),dx =int_{frac{1}{e}}^1f(x),dx+int_1^ef(x),dx=i_1 + i_2$$



          Substituting $xto frac{1}{y}$ i.e. $dx to - frac{1}{y^2}dy$ in the second integral gives



          $$i_2=int_1^frac{1}{e}f(x),dx = int_{frac{1}{e}}^1 frac{1}{y^2}f(frac{1}{y}),dy=int_{frac{1}{e}}^1 frac{1}{y^2}frac{1}{3frac{1}{y}}sin(frac{1}{y}-y),dy\=int_{frac{1}{e}}^1 frac{1}{3 y}sin(frac{1}{y}-y),dy=-int_{frac{1}{e}}^1 frac{1}{3 y}sin(y-frac{1}{y}),dy=- int_{frac{1}{e}}^1f(y),dy= - i_1 $$



          Hence the integral in question is $i = i_1 +(- i_1) = 0$

          Q.E.D.



          Remark: from the proof it is clear that "$e$" can be any positive real number.






          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044284%2fdefinite-integral-in-functional-relation-format%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            8














            $textbf{Hint:}$ $2f(x) + f(-x)=2f(-x) + f(x)implies f(-x)=f(x)$. So $$f(x)=dfrac{1}{3x}sinleft(x-dfrac{1}{x}right)$$
            $$fleft(dfrac1xright)=-x^2f(x) label{a}tag{1}$$



            $$displaystyleint_frac1e^ef(x)dx=int_frac1e^1f(x)dx:+:int_1^ef(x)dx$$



            For $1^{st}$ integral, $y=dfrac1x implies dfrac{-dy}{y^2}=dx$ with limits $dfrac1e=x=dfrac1yimplies y=e$



            to $1=x=dfrac1yimplies y=1$.



            $$implies int_frac1e^1f(x)dx=displaystyleint_e^1 fleft(dfrac1yright)dfrac{-dy}{y^2}=int_1^e fleft(dfrac1yright)dfrac{dy}{y^2}overset{(1)}{=}int_1^e -y^2f(y)dfrac{dy}{y^2}=-int_1^e f(y)dy$$



            Hence $$displaystyleint_frac1e^ef(x)dx=0$$






            share|cite|improve this answer























            • Substitute $x$ as $-x$ in your original equation. Assuming you know $sin(-x)=-sin x$.
              – Yadati Kiran
              Dec 17 at 18:58












            • Yeah I got it thanks attempting it again
              – aditya prakash
              Dec 17 at 19:00










            • Stuck with the integration now 😭
              – aditya prakash
              Dec 17 at 19:12
















            8














            $textbf{Hint:}$ $2f(x) + f(-x)=2f(-x) + f(x)implies f(-x)=f(x)$. So $$f(x)=dfrac{1}{3x}sinleft(x-dfrac{1}{x}right)$$
            $$fleft(dfrac1xright)=-x^2f(x) label{a}tag{1}$$



            $$displaystyleint_frac1e^ef(x)dx=int_frac1e^1f(x)dx:+:int_1^ef(x)dx$$



            For $1^{st}$ integral, $y=dfrac1x implies dfrac{-dy}{y^2}=dx$ with limits $dfrac1e=x=dfrac1yimplies y=e$



            to $1=x=dfrac1yimplies y=1$.



            $$implies int_frac1e^1f(x)dx=displaystyleint_e^1 fleft(dfrac1yright)dfrac{-dy}{y^2}=int_1^e fleft(dfrac1yright)dfrac{dy}{y^2}overset{(1)}{=}int_1^e -y^2f(y)dfrac{dy}{y^2}=-int_1^e f(y)dy$$



            Hence $$displaystyleint_frac1e^ef(x)dx=0$$






            share|cite|improve this answer























            • Substitute $x$ as $-x$ in your original equation. Assuming you know $sin(-x)=-sin x$.
              – Yadati Kiran
              Dec 17 at 18:58












            • Yeah I got it thanks attempting it again
              – aditya prakash
              Dec 17 at 19:00










            • Stuck with the integration now 😭
              – aditya prakash
              Dec 17 at 19:12














            8












            8








            8






            $textbf{Hint:}$ $2f(x) + f(-x)=2f(-x) + f(x)implies f(-x)=f(x)$. So $$f(x)=dfrac{1}{3x}sinleft(x-dfrac{1}{x}right)$$
            $$fleft(dfrac1xright)=-x^2f(x) label{a}tag{1}$$



            $$displaystyleint_frac1e^ef(x)dx=int_frac1e^1f(x)dx:+:int_1^ef(x)dx$$



            For $1^{st}$ integral, $y=dfrac1x implies dfrac{-dy}{y^2}=dx$ with limits $dfrac1e=x=dfrac1yimplies y=e$



            to $1=x=dfrac1yimplies y=1$.



            $$implies int_frac1e^1f(x)dx=displaystyleint_e^1 fleft(dfrac1yright)dfrac{-dy}{y^2}=int_1^e fleft(dfrac1yright)dfrac{dy}{y^2}overset{(1)}{=}int_1^e -y^2f(y)dfrac{dy}{y^2}=-int_1^e f(y)dy$$



            Hence $$displaystyleint_frac1e^ef(x)dx=0$$






            share|cite|improve this answer














            $textbf{Hint:}$ $2f(x) + f(-x)=2f(-x) + f(x)implies f(-x)=f(x)$. So $$f(x)=dfrac{1}{3x}sinleft(x-dfrac{1}{x}right)$$
            $$fleft(dfrac1xright)=-x^2f(x) label{a}tag{1}$$



            $$displaystyleint_frac1e^ef(x)dx=int_frac1e^1f(x)dx:+:int_1^ef(x)dx$$



            For $1^{st}$ integral, $y=dfrac1x implies dfrac{-dy}{y^2}=dx$ with limits $dfrac1e=x=dfrac1yimplies y=e$



            to $1=x=dfrac1yimplies y=1$.



            $$implies int_frac1e^1f(x)dx=displaystyleint_e^1 fleft(dfrac1yright)dfrac{-dy}{y^2}=int_1^e fleft(dfrac1yright)dfrac{dy}{y^2}overset{(1)}{=}int_1^e -y^2f(y)dfrac{dy}{y^2}=-int_1^e f(y)dy$$



            Hence $$displaystyleint_frac1e^ef(x)dx=0$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 17 at 20:17

























            answered Dec 17 at 18:46









            Yadati Kiran

            1,690619




            1,690619












            • Substitute $x$ as $-x$ in your original equation. Assuming you know $sin(-x)=-sin x$.
              – Yadati Kiran
              Dec 17 at 18:58












            • Yeah I got it thanks attempting it again
              – aditya prakash
              Dec 17 at 19:00










            • Stuck with the integration now 😭
              – aditya prakash
              Dec 17 at 19:12


















            • Substitute $x$ as $-x$ in your original equation. Assuming you know $sin(-x)=-sin x$.
              – Yadati Kiran
              Dec 17 at 18:58












            • Yeah I got it thanks attempting it again
              – aditya prakash
              Dec 17 at 19:00










            • Stuck with the integration now 😭
              – aditya prakash
              Dec 17 at 19:12
















            Substitute $x$ as $-x$ in your original equation. Assuming you know $sin(-x)=-sin x$.
            – Yadati Kiran
            Dec 17 at 18:58






            Substitute $x$ as $-x$ in your original equation. Assuming you know $sin(-x)=-sin x$.
            – Yadati Kiran
            Dec 17 at 18:58














            Yeah I got it thanks attempting it again
            – aditya prakash
            Dec 17 at 19:00




            Yeah I got it thanks attempting it again
            – aditya prakash
            Dec 17 at 19:00












            Stuck with the integration now 😭
            – aditya prakash
            Dec 17 at 19:12




            Stuck with the integration now 😭
            – aditya prakash
            Dec 17 at 19:12











            5














            The integral is zero.



            Proof:



            With $g(x) = frac{1}{x}sin(x-frac{1}{x})$ we have $2f(x)+f(-x) = g(x) = g(-x) = 2f(-x) + f(x)implies f(-x)=f(x)$ which gives



            $$f(x) = frac{1}{3 x}sin(x-frac{1}{x})$$



            Now the integral can be split up as



            $$i = int_{frac{1}{e}}^ef(x),dx =int_{frac{1}{e}}^1f(x),dx+int_1^ef(x),dx=i_1 + i_2$$



            Substituting $xto frac{1}{y}$ i.e. $dx to - frac{1}{y^2}dy$ in the second integral gives



            $$i_2=int_1^frac{1}{e}f(x),dx = int_{frac{1}{e}}^1 frac{1}{y^2}f(frac{1}{y}),dy=int_{frac{1}{e}}^1 frac{1}{y^2}frac{1}{3frac{1}{y}}sin(frac{1}{y}-y),dy\=int_{frac{1}{e}}^1 frac{1}{3 y}sin(frac{1}{y}-y),dy=-int_{frac{1}{e}}^1 frac{1}{3 y}sin(y-frac{1}{y}),dy=- int_{frac{1}{e}}^1f(y),dy= - i_1 $$



            Hence the integral in question is $i = i_1 +(- i_1) = 0$

            Q.E.D.



            Remark: from the proof it is clear that "$e$" can be any positive real number.






            share|cite|improve this answer




























              5














              The integral is zero.



              Proof:



              With $g(x) = frac{1}{x}sin(x-frac{1}{x})$ we have $2f(x)+f(-x) = g(x) = g(-x) = 2f(-x) + f(x)implies f(-x)=f(x)$ which gives



              $$f(x) = frac{1}{3 x}sin(x-frac{1}{x})$$



              Now the integral can be split up as



              $$i = int_{frac{1}{e}}^ef(x),dx =int_{frac{1}{e}}^1f(x),dx+int_1^ef(x),dx=i_1 + i_2$$



              Substituting $xto frac{1}{y}$ i.e. $dx to - frac{1}{y^2}dy$ in the second integral gives



              $$i_2=int_1^frac{1}{e}f(x),dx = int_{frac{1}{e}}^1 frac{1}{y^2}f(frac{1}{y}),dy=int_{frac{1}{e}}^1 frac{1}{y^2}frac{1}{3frac{1}{y}}sin(frac{1}{y}-y),dy\=int_{frac{1}{e}}^1 frac{1}{3 y}sin(frac{1}{y}-y),dy=-int_{frac{1}{e}}^1 frac{1}{3 y}sin(y-frac{1}{y}),dy=- int_{frac{1}{e}}^1f(y),dy= - i_1 $$



              Hence the integral in question is $i = i_1 +(- i_1) = 0$

              Q.E.D.



              Remark: from the proof it is clear that "$e$" can be any positive real number.






              share|cite|improve this answer


























                5












                5








                5






                The integral is zero.



                Proof:



                With $g(x) = frac{1}{x}sin(x-frac{1}{x})$ we have $2f(x)+f(-x) = g(x) = g(-x) = 2f(-x) + f(x)implies f(-x)=f(x)$ which gives



                $$f(x) = frac{1}{3 x}sin(x-frac{1}{x})$$



                Now the integral can be split up as



                $$i = int_{frac{1}{e}}^ef(x),dx =int_{frac{1}{e}}^1f(x),dx+int_1^ef(x),dx=i_1 + i_2$$



                Substituting $xto frac{1}{y}$ i.e. $dx to - frac{1}{y^2}dy$ in the second integral gives



                $$i_2=int_1^frac{1}{e}f(x),dx = int_{frac{1}{e}}^1 frac{1}{y^2}f(frac{1}{y}),dy=int_{frac{1}{e}}^1 frac{1}{y^2}frac{1}{3frac{1}{y}}sin(frac{1}{y}-y),dy\=int_{frac{1}{e}}^1 frac{1}{3 y}sin(frac{1}{y}-y),dy=-int_{frac{1}{e}}^1 frac{1}{3 y}sin(y-frac{1}{y}),dy=- int_{frac{1}{e}}^1f(y),dy= - i_1 $$



                Hence the integral in question is $i = i_1 +(- i_1) = 0$

                Q.E.D.



                Remark: from the proof it is clear that "$e$" can be any positive real number.






                share|cite|improve this answer














                The integral is zero.



                Proof:



                With $g(x) = frac{1}{x}sin(x-frac{1}{x})$ we have $2f(x)+f(-x) = g(x) = g(-x) = 2f(-x) + f(x)implies f(-x)=f(x)$ which gives



                $$f(x) = frac{1}{3 x}sin(x-frac{1}{x})$$



                Now the integral can be split up as



                $$i = int_{frac{1}{e}}^ef(x),dx =int_{frac{1}{e}}^1f(x),dx+int_1^ef(x),dx=i_1 + i_2$$



                Substituting $xto frac{1}{y}$ i.e. $dx to - frac{1}{y^2}dy$ in the second integral gives



                $$i_2=int_1^frac{1}{e}f(x),dx = int_{frac{1}{e}}^1 frac{1}{y^2}f(frac{1}{y}),dy=int_{frac{1}{e}}^1 frac{1}{y^2}frac{1}{3frac{1}{y}}sin(frac{1}{y}-y),dy\=int_{frac{1}{e}}^1 frac{1}{3 y}sin(frac{1}{y}-y),dy=-int_{frac{1}{e}}^1 frac{1}{3 y}sin(y-frac{1}{y}),dy=- int_{frac{1}{e}}^1f(y),dy= - i_1 $$



                Hence the integral in question is $i = i_1 +(- i_1) = 0$

                Q.E.D.



                Remark: from the proof it is clear that "$e$" can be any positive real number.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 18 at 13:05









                amWhy

                191k28224439




                191k28224439










                answered Dec 17 at 19:47









                Dr. Wolfgang Hintze

                3,150617




                3,150617






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044284%2fdefinite-integral-in-functional-relation-format%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Morgemoulin

                    Scott Moir

                    Souastre