How to prove this matrix equation
In page 594 of Bishop's PRML, the following equation is implied:
$$
-frac{1}{2}sum(mathbf{x}_n-mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n-mathbf{bar{x}}) = -frac{N}{2}mathrm{Tr}(mathbf{C}^{-1}mathbf{S})
$$
where
$$
mathbf{S} = frac{1}{N}sum(mathbf{x}_n-mathbf{bar{x}})(mathbf{x}_n-mathbf{bar{x}})^T
$$
,$mathbf{C}$ is a symmetric matrix and $mathbf{bar{x}} = frac{sum_{n=1}^Nmathbf{x}_n}{N}$.
I want to derive this equation myself. But I'm not sure how to do it. Could someone show why the equation holds?
linear-algebra
add a comment |
In page 594 of Bishop's PRML, the following equation is implied:
$$
-frac{1}{2}sum(mathbf{x}_n-mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n-mathbf{bar{x}}) = -frac{N}{2}mathrm{Tr}(mathbf{C}^{-1}mathbf{S})
$$
where
$$
mathbf{S} = frac{1}{N}sum(mathbf{x}_n-mathbf{bar{x}})(mathbf{x}_n-mathbf{bar{x}})^T
$$
,$mathbf{C}$ is a symmetric matrix and $mathbf{bar{x}} = frac{sum_{n=1}^Nmathbf{x}_n}{N}$.
I want to derive this equation myself. But I'm not sure how to do it. Could someone show why the equation holds?
linear-algebra
add a comment |
In page 594 of Bishop's PRML, the following equation is implied:
$$
-frac{1}{2}sum(mathbf{x}_n-mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n-mathbf{bar{x}}) = -frac{N}{2}mathrm{Tr}(mathbf{C}^{-1}mathbf{S})
$$
where
$$
mathbf{S} = frac{1}{N}sum(mathbf{x}_n-mathbf{bar{x}})(mathbf{x}_n-mathbf{bar{x}})^T
$$
,$mathbf{C}$ is a symmetric matrix and $mathbf{bar{x}} = frac{sum_{n=1}^Nmathbf{x}_n}{N}$.
I want to derive this equation myself. But I'm not sure how to do it. Could someone show why the equation holds?
linear-algebra
In page 594 of Bishop's PRML, the following equation is implied:
$$
-frac{1}{2}sum(mathbf{x}_n-mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n-mathbf{bar{x}}) = -frac{N}{2}mathrm{Tr}(mathbf{C}^{-1}mathbf{S})
$$
where
$$
mathbf{S} = frac{1}{N}sum(mathbf{x}_n-mathbf{bar{x}})(mathbf{x}_n-mathbf{bar{x}})^T
$$
,$mathbf{C}$ is a symmetric matrix and $mathbf{bar{x}} = frac{sum_{n=1}^Nmathbf{x}_n}{N}$.
I want to derive this equation myself. But I'm not sure how to do it. Could someone show why the equation holds?
linear-algebra
linear-algebra
asked 1 hour ago
Sandi
213111
213111
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
Guide:
Notice that $(x_n - bar{x})^TC^{-1}(x_n - bar{x})$ is a scalar,
hence $$(x_n - bar{x})^TC^{-1}(x_n - bar{x})= operatorname{Tr}left[(x_n - bar{x})^TC^{-1}(x_n - bar{x})right]=operatorname{Tr}left[C^{-1}(x_n - bar{x})(x_n - bar{x})^Tright]$$
since $operatorname{Tr}(AB)=operatorname{Tr}(BA)$.
Hopefully you can take it from here.
add a comment |
With the help of Siong Thye Goh, I did the following:
begin{align}
frac{1}{2}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}}) &= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})]\
&= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[sum^N_{n=1}mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}Nmathbf{S}] = -frac{N}{2}mathrm{Tr}[mathbf{C}^{-1}mathbf{S}]
end{align}
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
– Siong Thye Goh
57 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057651%2fhow-to-prove-this-matrix-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Guide:
Notice that $(x_n - bar{x})^TC^{-1}(x_n - bar{x})$ is a scalar,
hence $$(x_n - bar{x})^TC^{-1}(x_n - bar{x})= operatorname{Tr}left[(x_n - bar{x})^TC^{-1}(x_n - bar{x})right]=operatorname{Tr}left[C^{-1}(x_n - bar{x})(x_n - bar{x})^Tright]$$
since $operatorname{Tr}(AB)=operatorname{Tr}(BA)$.
Hopefully you can take it from here.
add a comment |
Guide:
Notice that $(x_n - bar{x})^TC^{-1}(x_n - bar{x})$ is a scalar,
hence $$(x_n - bar{x})^TC^{-1}(x_n - bar{x})= operatorname{Tr}left[(x_n - bar{x})^TC^{-1}(x_n - bar{x})right]=operatorname{Tr}left[C^{-1}(x_n - bar{x})(x_n - bar{x})^Tright]$$
since $operatorname{Tr}(AB)=operatorname{Tr}(BA)$.
Hopefully you can take it from here.
add a comment |
Guide:
Notice that $(x_n - bar{x})^TC^{-1}(x_n - bar{x})$ is a scalar,
hence $$(x_n - bar{x})^TC^{-1}(x_n - bar{x})= operatorname{Tr}left[(x_n - bar{x})^TC^{-1}(x_n - bar{x})right]=operatorname{Tr}left[C^{-1}(x_n - bar{x})(x_n - bar{x})^Tright]$$
since $operatorname{Tr}(AB)=operatorname{Tr}(BA)$.
Hopefully you can take it from here.
Guide:
Notice that $(x_n - bar{x})^TC^{-1}(x_n - bar{x})$ is a scalar,
hence $$(x_n - bar{x})^TC^{-1}(x_n - bar{x})= operatorname{Tr}left[(x_n - bar{x})^TC^{-1}(x_n - bar{x})right]=operatorname{Tr}left[C^{-1}(x_n - bar{x})(x_n - bar{x})^Tright]$$
since $operatorname{Tr}(AB)=operatorname{Tr}(BA)$.
Hopefully you can take it from here.
edited 1 hour ago
Bernard
118k639112
118k639112
answered 1 hour ago
Siong Thye Goh
99.1k1464117
99.1k1464117
add a comment |
add a comment |
With the help of Siong Thye Goh, I did the following:
begin{align}
frac{1}{2}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}}) &= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})]\
&= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[sum^N_{n=1}mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}Nmathbf{S}] = -frac{N}{2}mathrm{Tr}[mathbf{C}^{-1}mathbf{S}]
end{align}
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
– Siong Thye Goh
57 mins ago
add a comment |
With the help of Siong Thye Goh, I did the following:
begin{align}
frac{1}{2}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}}) &= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})]\
&= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[sum^N_{n=1}mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}Nmathbf{S}] = -frac{N}{2}mathrm{Tr}[mathbf{C}^{-1}mathbf{S}]
end{align}
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
– Siong Thye Goh
57 mins ago
add a comment |
With the help of Siong Thye Goh, I did the following:
begin{align}
frac{1}{2}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}}) &= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})]\
&= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[sum^N_{n=1}mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}Nmathbf{S}] = -frac{N}{2}mathrm{Tr}[mathbf{C}^{-1}mathbf{S}]
end{align}
With the help of Siong Thye Goh, I did the following:
begin{align}
frac{1}{2}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}}) &= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})]\
&= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[sum^N_{n=1}mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}Nmathbf{S}] = -frac{N}{2}mathrm{Tr}[mathbf{C}^{-1}mathbf{S}]
end{align}
answered 1 hour ago
Sandi
213111
213111
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
– Siong Thye Goh
57 mins ago
add a comment |
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
– Siong Thye Goh
57 mins ago
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
– Siong Thye Goh
57 mins ago
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
– Siong Thye Goh
57 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057651%2fhow-to-prove-this-matrix-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown