Do all projections matrices take this form?












2














Do all projection matrices take the form $P = A{(A^TA)}^{-1}A^T$? If so, can you help me derive it and explain it intuitively?










share|cite|improve this question



























    2














    Do all projection matrices take the form $P = A{(A^TA)}^{-1}A^T$? If so, can you help me derive it and explain it intuitively?










    share|cite|improve this question

























      2












      2








      2







      Do all projection matrices take the form $P = A{(A^TA)}^{-1}A^T$? If so, can you help me derive it and explain it intuitively?










      share|cite|improve this question













      Do all projection matrices take the form $P = A{(A^TA)}^{-1}A^T$? If so, can you help me derive it and explain it intuitively?







      linear-algebra matrices projective-geometry






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 4 hours ago









      Kid Cudi

      242




      242






















          2 Answers
          2






          active

          oldest

          votes


















          4














          $A(A^TA)^{-1}A^T$ is symmetric, but not all projection matrices are symmetric --- such as $pmatrix{1&1\ 0&0}$. Thus the answer is clearly no.



          It is true, however, that all orthogonal projection matrices over $mathbb R$ can be written in the form of $A(A^TA)^{-1}A^T$. By definition, if $Pin M_n(mathbb R)$ is an orthogonal projection, then $P|_U=operatorname{id}$ and $P|_{U^perp}=0$ for some subspace $Usubseteqmathbb R^n$. Let $A$ be any matrix whose columns form a basis of $U$ (any basis will do; it doesn't have to be orthonormal). Then $A^TA$ is nonsingular and $A(A^TA)^{-1}A^Tv=0$ for every $vin U^perp$. Also, since the columns of $A$ span $U$, every vector $uin U$ can be written as $Ax$ for some $xinmathbb R^n$. Therefore
          $$
          left(A(A^TA)^{-1}A^Tright)u=left(A(A^TA)^{-1}A^Tright)(Ax)=left(A(A^TA)^{-1}A^TAright)x=Ax=u
          $$

          for every $u=Axin U$. Hence $P$ and $A(A^TA)^{-1}A^T$ agree everywhere on $mathbb R^n$, i.e. $P=A(A^TA)^{-1}A^T$.






          share|cite|improve this answer























          • Thanks, I learned something from your answer -- I had forgotten that a projection matrix does not have to be an orthogonal projection matrix.
            – littleO
            1 hour ago



















          1














          As pointed out by @user1551, this is only true for orthogonal projection matrices.



          Let $P$ be the orthogonal projection operator that projects a vector $b in mathbb R^n$ onto a subspace $S subset mathbb R^n$. Let $(a_1,ldots,a_m)$ be a basis for $S$, and let $A$ be the matrix whose $i$th column is $a_i$. Then $S ={Ax mid x in mathbb R^m}$, and projecting $b$ onto $S$ is equivalent to selecting $x$ so as to minimize the distance from $b$ to $Ax$. Equivalently, we want to minimize
          $$
          r(x) = | Ax - b |^2.
          $$

          This is a least squares problem.
          Setting the gradient equal to $0$, we find that $x$ satisfies
          $$
          tag{1} A^T(Ax-b) = 0
          $$

          or equivalently
          $$A^TA x = A^T b.$$
          (This system of equations is often called the "normal equations". Visually, equation (1) just says that the residual vector $b - Ax$ is orthogonal to the column space of $A$.)



          It follows that $x = (A^T A)^{-1} A^T b$. So the projection of $b$ onto $S$ is
          $$
          P(x) = Ax = A(A^T A)^{-1} A^T b.
          $$






          share|cite|improve this answer























          • So it isn't necessarily true that all projection matrices take that form?
            – Kid Cudi
            3 hours ago











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058425%2fdo-all-projections-matrices-take-this-form%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4














          $A(A^TA)^{-1}A^T$ is symmetric, but not all projection matrices are symmetric --- such as $pmatrix{1&1\ 0&0}$. Thus the answer is clearly no.



          It is true, however, that all orthogonal projection matrices over $mathbb R$ can be written in the form of $A(A^TA)^{-1}A^T$. By definition, if $Pin M_n(mathbb R)$ is an orthogonal projection, then $P|_U=operatorname{id}$ and $P|_{U^perp}=0$ for some subspace $Usubseteqmathbb R^n$. Let $A$ be any matrix whose columns form a basis of $U$ (any basis will do; it doesn't have to be orthonormal). Then $A^TA$ is nonsingular and $A(A^TA)^{-1}A^Tv=0$ for every $vin U^perp$. Also, since the columns of $A$ span $U$, every vector $uin U$ can be written as $Ax$ for some $xinmathbb R^n$. Therefore
          $$
          left(A(A^TA)^{-1}A^Tright)u=left(A(A^TA)^{-1}A^Tright)(Ax)=left(A(A^TA)^{-1}A^TAright)x=Ax=u
          $$

          for every $u=Axin U$. Hence $P$ and $A(A^TA)^{-1}A^T$ agree everywhere on $mathbb R^n$, i.e. $P=A(A^TA)^{-1}A^T$.






          share|cite|improve this answer























          • Thanks, I learned something from your answer -- I had forgotten that a projection matrix does not have to be an orthogonal projection matrix.
            – littleO
            1 hour ago
















          4














          $A(A^TA)^{-1}A^T$ is symmetric, but not all projection matrices are symmetric --- such as $pmatrix{1&1\ 0&0}$. Thus the answer is clearly no.



          It is true, however, that all orthogonal projection matrices over $mathbb R$ can be written in the form of $A(A^TA)^{-1}A^T$. By definition, if $Pin M_n(mathbb R)$ is an orthogonal projection, then $P|_U=operatorname{id}$ and $P|_{U^perp}=0$ for some subspace $Usubseteqmathbb R^n$. Let $A$ be any matrix whose columns form a basis of $U$ (any basis will do; it doesn't have to be orthonormal). Then $A^TA$ is nonsingular and $A(A^TA)^{-1}A^Tv=0$ for every $vin U^perp$. Also, since the columns of $A$ span $U$, every vector $uin U$ can be written as $Ax$ for some $xinmathbb R^n$. Therefore
          $$
          left(A(A^TA)^{-1}A^Tright)u=left(A(A^TA)^{-1}A^Tright)(Ax)=left(A(A^TA)^{-1}A^TAright)x=Ax=u
          $$

          for every $u=Axin U$. Hence $P$ and $A(A^TA)^{-1}A^T$ agree everywhere on $mathbb R^n$, i.e. $P=A(A^TA)^{-1}A^T$.






          share|cite|improve this answer























          • Thanks, I learned something from your answer -- I had forgotten that a projection matrix does not have to be an orthogonal projection matrix.
            – littleO
            1 hour ago














          4












          4








          4






          $A(A^TA)^{-1}A^T$ is symmetric, but not all projection matrices are symmetric --- such as $pmatrix{1&1\ 0&0}$. Thus the answer is clearly no.



          It is true, however, that all orthogonal projection matrices over $mathbb R$ can be written in the form of $A(A^TA)^{-1}A^T$. By definition, if $Pin M_n(mathbb R)$ is an orthogonal projection, then $P|_U=operatorname{id}$ and $P|_{U^perp}=0$ for some subspace $Usubseteqmathbb R^n$. Let $A$ be any matrix whose columns form a basis of $U$ (any basis will do; it doesn't have to be orthonormal). Then $A^TA$ is nonsingular and $A(A^TA)^{-1}A^Tv=0$ for every $vin U^perp$. Also, since the columns of $A$ span $U$, every vector $uin U$ can be written as $Ax$ for some $xinmathbb R^n$. Therefore
          $$
          left(A(A^TA)^{-1}A^Tright)u=left(A(A^TA)^{-1}A^Tright)(Ax)=left(A(A^TA)^{-1}A^TAright)x=Ax=u
          $$

          for every $u=Axin U$. Hence $P$ and $A(A^TA)^{-1}A^T$ agree everywhere on $mathbb R^n$, i.e. $P=A(A^TA)^{-1}A^T$.






          share|cite|improve this answer














          $A(A^TA)^{-1}A^T$ is symmetric, but not all projection matrices are symmetric --- such as $pmatrix{1&1\ 0&0}$. Thus the answer is clearly no.



          It is true, however, that all orthogonal projection matrices over $mathbb R$ can be written in the form of $A(A^TA)^{-1}A^T$. By definition, if $Pin M_n(mathbb R)$ is an orthogonal projection, then $P|_U=operatorname{id}$ and $P|_{U^perp}=0$ for some subspace $Usubseteqmathbb R^n$. Let $A$ be any matrix whose columns form a basis of $U$ (any basis will do; it doesn't have to be orthonormal). Then $A^TA$ is nonsingular and $A(A^TA)^{-1}A^Tv=0$ for every $vin U^perp$. Also, since the columns of $A$ span $U$, every vector $uin U$ can be written as $Ax$ for some $xinmathbb R^n$. Therefore
          $$
          left(A(A^TA)^{-1}A^Tright)u=left(A(A^TA)^{-1}A^Tright)(Ax)=left(A(A^TA)^{-1}A^TAright)x=Ax=u
          $$

          for every $u=Axin U$. Hence $P$ and $A(A^TA)^{-1}A^T$ agree everywhere on $mathbb R^n$, i.e. $P=A(A^TA)^{-1}A^T$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 51 mins ago

























          answered 2 hours ago









          user1551

          71.4k566125




          71.4k566125












          • Thanks, I learned something from your answer -- I had forgotten that a projection matrix does not have to be an orthogonal projection matrix.
            – littleO
            1 hour ago


















          • Thanks, I learned something from your answer -- I had forgotten that a projection matrix does not have to be an orthogonal projection matrix.
            – littleO
            1 hour ago
















          Thanks, I learned something from your answer -- I had forgotten that a projection matrix does not have to be an orthogonal projection matrix.
          – littleO
          1 hour ago




          Thanks, I learned something from your answer -- I had forgotten that a projection matrix does not have to be an orthogonal projection matrix.
          – littleO
          1 hour ago











          1














          As pointed out by @user1551, this is only true for orthogonal projection matrices.



          Let $P$ be the orthogonal projection operator that projects a vector $b in mathbb R^n$ onto a subspace $S subset mathbb R^n$. Let $(a_1,ldots,a_m)$ be a basis for $S$, and let $A$ be the matrix whose $i$th column is $a_i$. Then $S ={Ax mid x in mathbb R^m}$, and projecting $b$ onto $S$ is equivalent to selecting $x$ so as to minimize the distance from $b$ to $Ax$. Equivalently, we want to minimize
          $$
          r(x) = | Ax - b |^2.
          $$

          This is a least squares problem.
          Setting the gradient equal to $0$, we find that $x$ satisfies
          $$
          tag{1} A^T(Ax-b) = 0
          $$

          or equivalently
          $$A^TA x = A^T b.$$
          (This system of equations is often called the "normal equations". Visually, equation (1) just says that the residual vector $b - Ax$ is orthogonal to the column space of $A$.)



          It follows that $x = (A^T A)^{-1} A^T b$. So the projection of $b$ onto $S$ is
          $$
          P(x) = Ax = A(A^T A)^{-1} A^T b.
          $$






          share|cite|improve this answer























          • So it isn't necessarily true that all projection matrices take that form?
            – Kid Cudi
            3 hours ago
















          1














          As pointed out by @user1551, this is only true for orthogonal projection matrices.



          Let $P$ be the orthogonal projection operator that projects a vector $b in mathbb R^n$ onto a subspace $S subset mathbb R^n$. Let $(a_1,ldots,a_m)$ be a basis for $S$, and let $A$ be the matrix whose $i$th column is $a_i$. Then $S ={Ax mid x in mathbb R^m}$, and projecting $b$ onto $S$ is equivalent to selecting $x$ so as to minimize the distance from $b$ to $Ax$. Equivalently, we want to minimize
          $$
          r(x) = | Ax - b |^2.
          $$

          This is a least squares problem.
          Setting the gradient equal to $0$, we find that $x$ satisfies
          $$
          tag{1} A^T(Ax-b) = 0
          $$

          or equivalently
          $$A^TA x = A^T b.$$
          (This system of equations is often called the "normal equations". Visually, equation (1) just says that the residual vector $b - Ax$ is orthogonal to the column space of $A$.)



          It follows that $x = (A^T A)^{-1} A^T b$. So the projection of $b$ onto $S$ is
          $$
          P(x) = Ax = A(A^T A)^{-1} A^T b.
          $$






          share|cite|improve this answer























          • So it isn't necessarily true that all projection matrices take that form?
            – Kid Cudi
            3 hours ago














          1












          1








          1






          As pointed out by @user1551, this is only true for orthogonal projection matrices.



          Let $P$ be the orthogonal projection operator that projects a vector $b in mathbb R^n$ onto a subspace $S subset mathbb R^n$. Let $(a_1,ldots,a_m)$ be a basis for $S$, and let $A$ be the matrix whose $i$th column is $a_i$. Then $S ={Ax mid x in mathbb R^m}$, and projecting $b$ onto $S$ is equivalent to selecting $x$ so as to minimize the distance from $b$ to $Ax$. Equivalently, we want to minimize
          $$
          r(x) = | Ax - b |^2.
          $$

          This is a least squares problem.
          Setting the gradient equal to $0$, we find that $x$ satisfies
          $$
          tag{1} A^T(Ax-b) = 0
          $$

          or equivalently
          $$A^TA x = A^T b.$$
          (This system of equations is often called the "normal equations". Visually, equation (1) just says that the residual vector $b - Ax$ is orthogonal to the column space of $A$.)



          It follows that $x = (A^T A)^{-1} A^T b$. So the projection of $b$ onto $S$ is
          $$
          P(x) = Ax = A(A^T A)^{-1} A^T b.
          $$






          share|cite|improve this answer














          As pointed out by @user1551, this is only true for orthogonal projection matrices.



          Let $P$ be the orthogonal projection operator that projects a vector $b in mathbb R^n$ onto a subspace $S subset mathbb R^n$. Let $(a_1,ldots,a_m)$ be a basis for $S$, and let $A$ be the matrix whose $i$th column is $a_i$. Then $S ={Ax mid x in mathbb R^m}$, and projecting $b$ onto $S$ is equivalent to selecting $x$ so as to minimize the distance from $b$ to $Ax$. Equivalently, we want to minimize
          $$
          r(x) = | Ax - b |^2.
          $$

          This is a least squares problem.
          Setting the gradient equal to $0$, we find that $x$ satisfies
          $$
          tag{1} A^T(Ax-b) = 0
          $$

          or equivalently
          $$A^TA x = A^T b.$$
          (This system of equations is often called the "normal equations". Visually, equation (1) just says that the residual vector $b - Ax$ is orthogonal to the column space of $A$.)



          It follows that $x = (A^T A)^{-1} A^T b$. So the projection of $b$ onto $S$ is
          $$
          P(x) = Ax = A(A^T A)^{-1} A^T b.
          $$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 1 hour ago

























          answered 4 hours ago









          littleO

          29.1k644108




          29.1k644108












          • So it isn't necessarily true that all projection matrices take that form?
            – Kid Cudi
            3 hours ago


















          • So it isn't necessarily true that all projection matrices take that form?
            – Kid Cudi
            3 hours ago
















          So it isn't necessarily true that all projection matrices take that form?
          – Kid Cudi
          3 hours ago




          So it isn't necessarily true that all projection matrices take that form?
          – Kid Cudi
          3 hours ago


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058425%2fdo-all-projections-matrices-take-this-form%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Morgemoulin

          Scott Moir

          Souastre