Minimum steps to reach target by a Knight In Scala
Given a chessboard of N size (square matrix), the position of Knight and position of a target find out minimum steps ( both count and exact steps) from start tp target for a Knight.
If it is not possible to reach to the given position return -1 as step count.
Here is implementation in scala (assuming N = 4 or 4X4 chess board).
import scala.collection.mutable._
object KnightMoves extends App {
case class Pos(row: Int, col: Int)
val Size = 4
def calculateMoves(from: Pos, target: Pos ): (Int, Seq[Pos])= {
val pendingPos = collection.mutable.Queue[Pos](from)
val positionVisited = collection.mutable.HashMap[Pos, (Int, Seq[Pos])](from -> (0, Seq()))
var targetReached = false
while(pendingPos.nonEmpty && !targetReached) {
val p = pendingPos.dequeue()
possibleMoves(p) foreach { position =>
if ( position == target) {
targetReached = true
} else if (!(positionVisited contains position)) {
pendingPos enqueue position
}
positionVisited += position -> ((positionVisited(p)._1 + 1,(positionVisited(p)._2 ++ Seq(p))))
}
}
if (targetReached) positionVisited(target) else (-1, Seq())
}
def isValidPos(position: Pos): Boolean =
((0 until Size) contains position.row) && ((0 until Size) contains position.col)
def possibleMoves(position: Pos): List[Pos] =
List(Pos(position.row - 2, position.col + 1),
Pos(position.row - 2, position.col - 1),
Pos(position.row + 2, position.col + 1),
Pos(position.row + 2, position.col - 1),
Pos(position.row - 1 , position.col + 2),
Pos(position.row - 1 , position.col - 2),
Pos(position.row + 1 , position.col + 2),
Pos(position.row + 1 , position.col - 2)
) filter( pos => isValidPos(pos))
println(calculateMoves(Pos(0,1),Pos(0,0)))
println(calculateMoves(Pos(0,1),Pos(0,2)))
}
Program generate following output for two test statements at bottom.
(3,ArrayBuffer(Pos(0,1), Pos(2,0), Pos(1,2)))
(3,ArrayBuffer(Pos(0,1), Pos(2,2), Pos(1,0)))
interview-questions functional-programming matrix scala cache
add a comment |
Given a chessboard of N size (square matrix), the position of Knight and position of a target find out minimum steps ( both count and exact steps) from start tp target for a Knight.
If it is not possible to reach to the given position return -1 as step count.
Here is implementation in scala (assuming N = 4 or 4X4 chess board).
import scala.collection.mutable._
object KnightMoves extends App {
case class Pos(row: Int, col: Int)
val Size = 4
def calculateMoves(from: Pos, target: Pos ): (Int, Seq[Pos])= {
val pendingPos = collection.mutable.Queue[Pos](from)
val positionVisited = collection.mutable.HashMap[Pos, (Int, Seq[Pos])](from -> (0, Seq()))
var targetReached = false
while(pendingPos.nonEmpty && !targetReached) {
val p = pendingPos.dequeue()
possibleMoves(p) foreach { position =>
if ( position == target) {
targetReached = true
} else if (!(positionVisited contains position)) {
pendingPos enqueue position
}
positionVisited += position -> ((positionVisited(p)._1 + 1,(positionVisited(p)._2 ++ Seq(p))))
}
}
if (targetReached) positionVisited(target) else (-1, Seq())
}
def isValidPos(position: Pos): Boolean =
((0 until Size) contains position.row) && ((0 until Size) contains position.col)
def possibleMoves(position: Pos): List[Pos] =
List(Pos(position.row - 2, position.col + 1),
Pos(position.row - 2, position.col - 1),
Pos(position.row + 2, position.col + 1),
Pos(position.row + 2, position.col - 1),
Pos(position.row - 1 , position.col + 2),
Pos(position.row - 1 , position.col - 2),
Pos(position.row + 1 , position.col + 2),
Pos(position.row + 1 , position.col - 2)
) filter( pos => isValidPos(pos))
println(calculateMoves(Pos(0,1),Pos(0,0)))
println(calculateMoves(Pos(0,1),Pos(0,2)))
}
Program generate following output for two test statements at bottom.
(3,ArrayBuffer(Pos(0,1), Pos(2,0), Pos(1,2)))
(3,ArrayBuffer(Pos(0,1), Pos(2,2), Pos(1,0)))
interview-questions functional-programming matrix scala cache
add a comment |
Given a chessboard of N size (square matrix), the position of Knight and position of a target find out minimum steps ( both count and exact steps) from start tp target for a Knight.
If it is not possible to reach to the given position return -1 as step count.
Here is implementation in scala (assuming N = 4 or 4X4 chess board).
import scala.collection.mutable._
object KnightMoves extends App {
case class Pos(row: Int, col: Int)
val Size = 4
def calculateMoves(from: Pos, target: Pos ): (Int, Seq[Pos])= {
val pendingPos = collection.mutable.Queue[Pos](from)
val positionVisited = collection.mutable.HashMap[Pos, (Int, Seq[Pos])](from -> (0, Seq()))
var targetReached = false
while(pendingPos.nonEmpty && !targetReached) {
val p = pendingPos.dequeue()
possibleMoves(p) foreach { position =>
if ( position == target) {
targetReached = true
} else if (!(positionVisited contains position)) {
pendingPos enqueue position
}
positionVisited += position -> ((positionVisited(p)._1 + 1,(positionVisited(p)._2 ++ Seq(p))))
}
}
if (targetReached) positionVisited(target) else (-1, Seq())
}
def isValidPos(position: Pos): Boolean =
((0 until Size) contains position.row) && ((0 until Size) contains position.col)
def possibleMoves(position: Pos): List[Pos] =
List(Pos(position.row - 2, position.col + 1),
Pos(position.row - 2, position.col - 1),
Pos(position.row + 2, position.col + 1),
Pos(position.row + 2, position.col - 1),
Pos(position.row - 1 , position.col + 2),
Pos(position.row - 1 , position.col - 2),
Pos(position.row + 1 , position.col + 2),
Pos(position.row + 1 , position.col - 2)
) filter( pos => isValidPos(pos))
println(calculateMoves(Pos(0,1),Pos(0,0)))
println(calculateMoves(Pos(0,1),Pos(0,2)))
}
Program generate following output for two test statements at bottom.
(3,ArrayBuffer(Pos(0,1), Pos(2,0), Pos(1,2)))
(3,ArrayBuffer(Pos(0,1), Pos(2,2), Pos(1,0)))
interview-questions functional-programming matrix scala cache
Given a chessboard of N size (square matrix), the position of Knight and position of a target find out minimum steps ( both count and exact steps) from start tp target for a Knight.
If it is not possible to reach to the given position return -1 as step count.
Here is implementation in scala (assuming N = 4 or 4X4 chess board).
import scala.collection.mutable._
object KnightMoves extends App {
case class Pos(row: Int, col: Int)
val Size = 4
def calculateMoves(from: Pos, target: Pos ): (Int, Seq[Pos])= {
val pendingPos = collection.mutable.Queue[Pos](from)
val positionVisited = collection.mutable.HashMap[Pos, (Int, Seq[Pos])](from -> (0, Seq()))
var targetReached = false
while(pendingPos.nonEmpty && !targetReached) {
val p = pendingPos.dequeue()
possibleMoves(p) foreach { position =>
if ( position == target) {
targetReached = true
} else if (!(positionVisited contains position)) {
pendingPos enqueue position
}
positionVisited += position -> ((positionVisited(p)._1 + 1,(positionVisited(p)._2 ++ Seq(p))))
}
}
if (targetReached) positionVisited(target) else (-1, Seq())
}
def isValidPos(position: Pos): Boolean =
((0 until Size) contains position.row) && ((0 until Size) contains position.col)
def possibleMoves(position: Pos): List[Pos] =
List(Pos(position.row - 2, position.col + 1),
Pos(position.row - 2, position.col - 1),
Pos(position.row + 2, position.col + 1),
Pos(position.row + 2, position.col - 1),
Pos(position.row - 1 , position.col + 2),
Pos(position.row - 1 , position.col - 2),
Pos(position.row + 1 , position.col + 2),
Pos(position.row + 1 , position.col - 2)
) filter( pos => isValidPos(pos))
println(calculateMoves(Pos(0,1),Pos(0,0)))
println(calculateMoves(Pos(0,1),Pos(0,2)))
}
Program generate following output for two test statements at bottom.
(3,ArrayBuffer(Pos(0,1), Pos(2,0), Pos(1,2)))
(3,ArrayBuffer(Pos(0,1), Pos(2,2), Pos(1,0)))
interview-questions functional-programming matrix scala cache
interview-questions functional-programming matrix scala cache
asked 8 mins ago
vikrant
787
787
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "196"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210723%2fminimum-steps-to-reach-target-by-a-knight-in-scala%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210723%2fminimum-steps-to-reach-target-by-a-knight-in-scala%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown