Minimum steps to reach target by a Knight In Scala












0














Given a chessboard of N size (square matrix), the position of Knight and position of a target find out minimum steps ( both count and exact steps) from start tp target for a Knight.



If it is not possible to reach to the given position return -1 as step count.



Here is implementation in scala (assuming N = 4 or 4X4 chess board).



import scala.collection.mutable._

object KnightMoves extends App {
case class Pos(row: Int, col: Int)
val Size = 4

def calculateMoves(from: Pos, target: Pos ): (Int, Seq[Pos])= {
val pendingPos = collection.mutable.Queue[Pos](from)
val positionVisited = collection.mutable.HashMap[Pos, (Int, Seq[Pos])](from -> (0, Seq()))
var targetReached = false

while(pendingPos.nonEmpty && !targetReached) {
val p = pendingPos.dequeue()
possibleMoves(p) foreach { position =>
if ( position == target) {
targetReached = true
} else if (!(positionVisited contains position)) {
pendingPos enqueue position
}
positionVisited += position -> ((positionVisited(p)._1 + 1,(positionVisited(p)._2 ++ Seq(p))))
}
}
if (targetReached) positionVisited(target) else (-1, Seq())
}

def isValidPos(position: Pos): Boolean =
((0 until Size) contains position.row) && ((0 until Size) contains position.col)

def possibleMoves(position: Pos): List[Pos] =
List(Pos(position.row - 2, position.col + 1),
Pos(position.row - 2, position.col - 1),
Pos(position.row + 2, position.col + 1),
Pos(position.row + 2, position.col - 1),
Pos(position.row - 1 , position.col + 2),
Pos(position.row - 1 , position.col - 2),
Pos(position.row + 1 , position.col + 2),
Pos(position.row + 1 , position.col - 2)
) filter( pos => isValidPos(pos))

println(calculateMoves(Pos(0,1),Pos(0,0)))
println(calculateMoves(Pos(0,1),Pos(0,2)))
}


Program generate following output for two test statements at bottom.



(3,ArrayBuffer(Pos(0,1), Pos(2,0), Pos(1,2)))
(3,ArrayBuffer(Pos(0,1), Pos(2,2), Pos(1,0)))








share



























    0














    Given a chessboard of N size (square matrix), the position of Knight and position of a target find out minimum steps ( both count and exact steps) from start tp target for a Knight.



    If it is not possible to reach to the given position return -1 as step count.



    Here is implementation in scala (assuming N = 4 or 4X4 chess board).



    import scala.collection.mutable._

    object KnightMoves extends App {
    case class Pos(row: Int, col: Int)
    val Size = 4

    def calculateMoves(from: Pos, target: Pos ): (Int, Seq[Pos])= {
    val pendingPos = collection.mutable.Queue[Pos](from)
    val positionVisited = collection.mutable.HashMap[Pos, (Int, Seq[Pos])](from -> (0, Seq()))
    var targetReached = false

    while(pendingPos.nonEmpty && !targetReached) {
    val p = pendingPos.dequeue()
    possibleMoves(p) foreach { position =>
    if ( position == target) {
    targetReached = true
    } else if (!(positionVisited contains position)) {
    pendingPos enqueue position
    }
    positionVisited += position -> ((positionVisited(p)._1 + 1,(positionVisited(p)._2 ++ Seq(p))))
    }
    }
    if (targetReached) positionVisited(target) else (-1, Seq())
    }

    def isValidPos(position: Pos): Boolean =
    ((0 until Size) contains position.row) && ((0 until Size) contains position.col)

    def possibleMoves(position: Pos): List[Pos] =
    List(Pos(position.row - 2, position.col + 1),
    Pos(position.row - 2, position.col - 1),
    Pos(position.row + 2, position.col + 1),
    Pos(position.row + 2, position.col - 1),
    Pos(position.row - 1 , position.col + 2),
    Pos(position.row - 1 , position.col - 2),
    Pos(position.row + 1 , position.col + 2),
    Pos(position.row + 1 , position.col - 2)
    ) filter( pos => isValidPos(pos))

    println(calculateMoves(Pos(0,1),Pos(0,0)))
    println(calculateMoves(Pos(0,1),Pos(0,2)))
    }


    Program generate following output for two test statements at bottom.



    (3,ArrayBuffer(Pos(0,1), Pos(2,0), Pos(1,2)))
    (3,ArrayBuffer(Pos(0,1), Pos(2,2), Pos(1,0)))








    share

























      0












      0








      0







      Given a chessboard of N size (square matrix), the position of Knight and position of a target find out minimum steps ( both count and exact steps) from start tp target for a Knight.



      If it is not possible to reach to the given position return -1 as step count.



      Here is implementation in scala (assuming N = 4 or 4X4 chess board).



      import scala.collection.mutable._

      object KnightMoves extends App {
      case class Pos(row: Int, col: Int)
      val Size = 4

      def calculateMoves(from: Pos, target: Pos ): (Int, Seq[Pos])= {
      val pendingPos = collection.mutable.Queue[Pos](from)
      val positionVisited = collection.mutable.HashMap[Pos, (Int, Seq[Pos])](from -> (0, Seq()))
      var targetReached = false

      while(pendingPos.nonEmpty && !targetReached) {
      val p = pendingPos.dequeue()
      possibleMoves(p) foreach { position =>
      if ( position == target) {
      targetReached = true
      } else if (!(positionVisited contains position)) {
      pendingPos enqueue position
      }
      positionVisited += position -> ((positionVisited(p)._1 + 1,(positionVisited(p)._2 ++ Seq(p))))
      }
      }
      if (targetReached) positionVisited(target) else (-1, Seq())
      }

      def isValidPos(position: Pos): Boolean =
      ((0 until Size) contains position.row) && ((0 until Size) contains position.col)

      def possibleMoves(position: Pos): List[Pos] =
      List(Pos(position.row - 2, position.col + 1),
      Pos(position.row - 2, position.col - 1),
      Pos(position.row + 2, position.col + 1),
      Pos(position.row + 2, position.col - 1),
      Pos(position.row - 1 , position.col + 2),
      Pos(position.row - 1 , position.col - 2),
      Pos(position.row + 1 , position.col + 2),
      Pos(position.row + 1 , position.col - 2)
      ) filter( pos => isValidPos(pos))

      println(calculateMoves(Pos(0,1),Pos(0,0)))
      println(calculateMoves(Pos(0,1),Pos(0,2)))
      }


      Program generate following output for two test statements at bottom.



      (3,ArrayBuffer(Pos(0,1), Pos(2,0), Pos(1,2)))
      (3,ArrayBuffer(Pos(0,1), Pos(2,2), Pos(1,0)))








      share













      Given a chessboard of N size (square matrix), the position of Knight and position of a target find out minimum steps ( both count and exact steps) from start tp target for a Knight.



      If it is not possible to reach to the given position return -1 as step count.



      Here is implementation in scala (assuming N = 4 or 4X4 chess board).



      import scala.collection.mutable._

      object KnightMoves extends App {
      case class Pos(row: Int, col: Int)
      val Size = 4

      def calculateMoves(from: Pos, target: Pos ): (Int, Seq[Pos])= {
      val pendingPos = collection.mutable.Queue[Pos](from)
      val positionVisited = collection.mutable.HashMap[Pos, (Int, Seq[Pos])](from -> (0, Seq()))
      var targetReached = false

      while(pendingPos.nonEmpty && !targetReached) {
      val p = pendingPos.dequeue()
      possibleMoves(p) foreach { position =>
      if ( position == target) {
      targetReached = true
      } else if (!(positionVisited contains position)) {
      pendingPos enqueue position
      }
      positionVisited += position -> ((positionVisited(p)._1 + 1,(positionVisited(p)._2 ++ Seq(p))))
      }
      }
      if (targetReached) positionVisited(target) else (-1, Seq())
      }

      def isValidPos(position: Pos): Boolean =
      ((0 until Size) contains position.row) && ((0 until Size) contains position.col)

      def possibleMoves(position: Pos): List[Pos] =
      List(Pos(position.row - 2, position.col + 1),
      Pos(position.row - 2, position.col - 1),
      Pos(position.row + 2, position.col + 1),
      Pos(position.row + 2, position.col - 1),
      Pos(position.row - 1 , position.col + 2),
      Pos(position.row - 1 , position.col - 2),
      Pos(position.row + 1 , position.col + 2),
      Pos(position.row + 1 , position.col - 2)
      ) filter( pos => isValidPos(pos))

      println(calculateMoves(Pos(0,1),Pos(0,0)))
      println(calculateMoves(Pos(0,1),Pos(0,2)))
      }


      Program generate following output for two test statements at bottom.



      (3,ArrayBuffer(Pos(0,1), Pos(2,0), Pos(1,2)))
      (3,ArrayBuffer(Pos(0,1), Pos(2,2), Pos(1,0)))






      interview-questions functional-programming matrix scala cache





      share












      share










      share



      share










      asked 8 mins ago









      vikrant

      787




      787



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "196"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210723%2fminimum-steps-to-reach-target-by-a-knight-in-scala%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Code Review Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210723%2fminimum-steps-to-reach-target-by-a-knight-in-scala%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Morgemoulin

          Scott Moir

          Souastre