Find the value of $1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}…$












9















Find the value of this :$$1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}....$$




Try: We can write the above series as



$${S} = int^{1}_{0}bigg[1-x^6+x^8-x^{14}+x^{16}-x^{22}+cdotsbigg]dx$$



$$S = int^{1}_{0}(1-x^6)bigg[1+x^{8}+x^{16}+cdots cdots bigg]dx$$



So $$S = int^{1}_{0}frac{1-x^6}{1-x^{8}}dx = int^{1}_{0}frac{x^4+x^2+1}{(x^2+1)(x^4+1)}dx$$



Now i am struck in that integration.



Did not understand how to solve it



could some help me to solve it. Thanks in advance










share|cite|improve this question
























  • Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
    – Michael Burr
    Dec 18 at 15:24






  • 2




    Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
    – lab bhattacharjee
    Dec 18 at 15:25






  • 1




    See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
    – lab bhattacharjee
    Dec 18 at 15:26










  • Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
    – crskhr
    Dec 18 at 15:28








  • 1




    @Stockfish: Absolutely convergent series.
    – Clayton
    Dec 18 at 15:32
















9















Find the value of this :$$1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}....$$




Try: We can write the above series as



$${S} = int^{1}_{0}bigg[1-x^6+x^8-x^{14}+x^{16}-x^{22}+cdotsbigg]dx$$



$$S = int^{1}_{0}(1-x^6)bigg[1+x^{8}+x^{16}+cdots cdots bigg]dx$$



So $$S = int^{1}_{0}frac{1-x^6}{1-x^{8}}dx = int^{1}_{0}frac{x^4+x^2+1}{(x^2+1)(x^4+1)}dx$$



Now i am struck in that integration.



Did not understand how to solve it



could some help me to solve it. Thanks in advance










share|cite|improve this question
























  • Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
    – Michael Burr
    Dec 18 at 15:24






  • 2




    Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
    – lab bhattacharjee
    Dec 18 at 15:25






  • 1




    See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
    – lab bhattacharjee
    Dec 18 at 15:26










  • Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
    – crskhr
    Dec 18 at 15:28








  • 1




    @Stockfish: Absolutely convergent series.
    – Clayton
    Dec 18 at 15:32














9












9








9


2






Find the value of this :$$1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}....$$




Try: We can write the above series as



$${S} = int^{1}_{0}bigg[1-x^6+x^8-x^{14}+x^{16}-x^{22}+cdotsbigg]dx$$



$$S = int^{1}_{0}(1-x^6)bigg[1+x^{8}+x^{16}+cdots cdots bigg]dx$$



So $$S = int^{1}_{0}frac{1-x^6}{1-x^{8}}dx = int^{1}_{0}frac{x^4+x^2+1}{(x^2+1)(x^4+1)}dx$$



Now i am struck in that integration.



Did not understand how to solve it



could some help me to solve it. Thanks in advance










share|cite|improve this question
















Find the value of this :$$1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}....$$




Try: We can write the above series as



$${S} = int^{1}_{0}bigg[1-x^6+x^8-x^{14}+x^{16}-x^{22}+cdotsbigg]dx$$



$$S = int^{1}_{0}(1-x^6)bigg[1+x^{8}+x^{16}+cdots cdots bigg]dx$$



So $$S = int^{1}_{0}frac{1-x^6}{1-x^{8}}dx = int^{1}_{0}frac{x^4+x^2+1}{(x^2+1)(x^4+1)}dx$$



Now i am struck in that integration.



Did not understand how to solve it



could some help me to solve it. Thanks in advance







integration sequences-and-series definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 19 at 6:04









Asaf Karagila

301k32424755




301k32424755










asked Dec 18 at 15:20









D Tiwari

5,3052630




5,3052630












  • Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
    – Michael Burr
    Dec 18 at 15:24






  • 2




    Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
    – lab bhattacharjee
    Dec 18 at 15:25






  • 1




    See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
    – lab bhattacharjee
    Dec 18 at 15:26










  • Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
    – crskhr
    Dec 18 at 15:28








  • 1




    @Stockfish: Absolutely convergent series.
    – Clayton
    Dec 18 at 15:32


















  • Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
    – Michael Burr
    Dec 18 at 15:24






  • 2




    Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
    – lab bhattacharjee
    Dec 18 at 15:25






  • 1




    See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
    – lab bhattacharjee
    Dec 18 at 15:26










  • Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
    – crskhr
    Dec 18 at 15:28








  • 1




    @Stockfish: Absolutely convergent series.
    – Clayton
    Dec 18 at 15:32
















Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
– Michael Burr
Dec 18 at 15:24




Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
– Michael Burr
Dec 18 at 15:24




2




2




Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
– lab bhattacharjee
Dec 18 at 15:25




Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
– lab bhattacharjee
Dec 18 at 15:25




1




1




See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
– lab bhattacharjee
Dec 18 at 15:26




See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
– lab bhattacharjee
Dec 18 at 15:26












Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
– crskhr
Dec 18 at 15:28






Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
– crskhr
Dec 18 at 15:28






1




1




@Stockfish: Absolutely convergent series.
– Clayton
Dec 18 at 15:32




@Stockfish: Absolutely convergent series.
– Clayton
Dec 18 at 15:32










4 Answers
4






active

oldest

votes


















4














Another approach, which could be useful to check yours through integrals,
is same as per the similar post, using the Digamma function $psi (z)$.
$$
eqalign{
& 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
& = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
& = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
& = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
& = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
& = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
$$

where:



$$
Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
$$

is the functional equation for the Digamma;

which implies that Digamma is the Antidelta of $1/z$
$$
eqalign{
& psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
& Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
$$

and we used the Reflection formula for Digamma
$$
psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
$$




Now, the above, suggests a way to solve the integral.




Let's replace $x^8$ with $y$
$$
int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
= limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
$$

then consider that we have
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
& = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
- left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
$$

so we are ready to use the integral and Gamma representation for the Beta function
$$
eqalign{
& 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
- int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {Gamma left( {1/8 + varepsilon } right)}}
- {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
+ Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
- {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
- left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = psi left( {7/8} right) - psi left( {1/8} right) cr}
$$

which is the same result as above.




Let me add a more straight derivation of the above.




We rewrite the integrand as
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
& = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
$$

and compare with the integral representation of Digamma
$$
psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
$$






share|cite|improve this answer































    10














    HINT: Notice that
    $$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
    Now we just have to evaluate the integrals
    $$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
    $$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
    $$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
    and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?






    share|cite|improve this answer





























      2














      The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$






      share|cite|improve this answer





























        1














        Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.






        share|cite|improve this answer





















          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045282%2ffind-the-value-of-1-frac17-frac19-frac115-frac117-frac1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4














          Another approach, which could be useful to check yours through integrals,
          is same as per the similar post, using the Digamma function $psi (z)$.
          $$
          eqalign{
          & 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
          & = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
          & = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
          & = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
          & = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
          & = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
          & = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
          & = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
          & = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
          & = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
          & = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
          $$

          where:



          $$
          Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
          $$

          is the functional equation for the Digamma;

          which implies that Digamma is the Antidelta of $1/z$
          $$
          eqalign{
          & psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
          & Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
          $$

          and we used the Reflection formula for Digamma
          $$
          psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
          $$




          Now, the above, suggests a way to solve the integral.




          Let's replace $x^8$ with $y$
          $$
          int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
          = limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
          $$

          then consider that we have
          $$
          eqalign{
          & {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
          & = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
          & = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
          - left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
          $$

          so we are ready to use the integral and Gamma representation for the Beta function
          $$
          eqalign{
          & 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
          & = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
          - int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
          & = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
          & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
          over {Gamma left( {1/8 + varepsilon } right)}}
          - {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
          & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
          over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
          + Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
          over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
          & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
          - {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
          & = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
          - left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
          & = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
          & = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
          & = psi left( {7/8} right) - psi left( {1/8} right) cr}
          $$

          which is the same result as above.




          Let me add a more straight derivation of the above.




          We rewrite the integrand as
          $$
          eqalign{
          & {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
          & = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
          $$

          and compare with the integral representation of Digamma
          $$
          psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
          $$






          share|cite|improve this answer




























            4














            Another approach, which could be useful to check yours through integrals,
            is same as per the similar post, using the Digamma function $psi (z)$.
            $$
            eqalign{
            & 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
            & = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
            & = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
            & = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
            & = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
            & = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
            & = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
            & = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
            & = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
            & = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
            & = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
            $$

            where:



            $$
            Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
            $$

            is the functional equation for the Digamma;

            which implies that Digamma is the Antidelta of $1/z$
            $$
            eqalign{
            & psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
            & Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
            $$

            and we used the Reflection formula for Digamma
            $$
            psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
            $$




            Now, the above, suggests a way to solve the integral.




            Let's replace $x^8$ with $y$
            $$
            int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
            = limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
            $$

            then consider that we have
            $$
            eqalign{
            & {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
            & = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
            & = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
            - left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
            $$

            so we are ready to use the integral and Gamma representation for the Beta function
            $$
            eqalign{
            & 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
            & = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
            - int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
            & = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
            & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
            over {Gamma left( {1/8 + varepsilon } right)}}
            - {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
            & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
            over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
            + Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
            over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
            & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
            - {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
            & = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
            - left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
            & = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
            & = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
            & = psi left( {7/8} right) - psi left( {1/8} right) cr}
            $$

            which is the same result as above.




            Let me add a more straight derivation of the above.




            We rewrite the integrand as
            $$
            eqalign{
            & {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
            & = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
            $$

            and compare with the integral representation of Digamma
            $$
            psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
            $$






            share|cite|improve this answer


























              4












              4








              4






              Another approach, which could be useful to check yours through integrals,
              is same as per the similar post, using the Digamma function $psi (z)$.
              $$
              eqalign{
              & 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
              & = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
              & = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
              & = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
              & = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
              & = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
              & = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
              & = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
              & = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
              & = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
              & = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
              $$

              where:



              $$
              Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
              $$

              is the functional equation for the Digamma;

              which implies that Digamma is the Antidelta of $1/z$
              $$
              eqalign{
              & psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
              & Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
              $$

              and we used the Reflection formula for Digamma
              $$
              psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
              $$




              Now, the above, suggests a way to solve the integral.




              Let's replace $x^8$ with $y$
              $$
              int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
              = limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
              $$

              then consider that we have
              $$
              eqalign{
              & {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
              & = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
              - left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
              $$

              so we are ready to use the integral and Gamma representation for the Beta function
              $$
              eqalign{
              & 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
              - int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
              over {Gamma left( {1/8 + varepsilon } right)}}
              - {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
              over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
              + Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
              over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
              - {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
              - left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
              & = psi left( {7/8} right) - psi left( {1/8} right) cr}
              $$

              which is the same result as above.




              Let me add a more straight derivation of the above.




              We rewrite the integrand as
              $$
              eqalign{
              & {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
              & = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
              $$

              and compare with the integral representation of Digamma
              $$
              psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
              $$






              share|cite|improve this answer














              Another approach, which could be useful to check yours through integrals,
              is same as per the similar post, using the Digamma function $psi (z)$.
              $$
              eqalign{
              & 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
              & = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
              & = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
              & = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
              & = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
              & = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
              & = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
              & = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
              & = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
              & = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
              & = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
              $$

              where:



              $$
              Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
              $$

              is the functional equation for the Digamma;

              which implies that Digamma is the Antidelta of $1/z$
              $$
              eqalign{
              & psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
              & Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
              $$

              and we used the Reflection formula for Digamma
              $$
              psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
              $$




              Now, the above, suggests a way to solve the integral.




              Let's replace $x^8$ with $y$
              $$
              int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
              = limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
              $$

              then consider that we have
              $$
              eqalign{
              & {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
              & = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
              - left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
              $$

              so we are ready to use the integral and Gamma representation for the Beta function
              $$
              eqalign{
              & 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
              - int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
              over {Gamma left( {1/8 + varepsilon } right)}}
              - {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
              over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
              + Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
              over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
              - {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
              - left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
              & = psi left( {7/8} right) - psi left( {1/8} right) cr}
              $$

              which is the same result as above.




              Let me add a more straight derivation of the above.




              We rewrite the integrand as
              $$
              eqalign{
              & {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
              & = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
              $$

              and compare with the integral representation of Digamma
              $$
              psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
              $$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Dec 18 at 22:24

























              answered Dec 18 at 16:19









              G Cab

              17.9k31237




              17.9k31237























                  10














                  HINT: Notice that
                  $$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
                  Now we just have to evaluate the integrals
                  $$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
                  $$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
                  $$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
                  and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?






                  share|cite|improve this answer


























                    10














                    HINT: Notice that
                    $$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
                    Now we just have to evaluate the integrals
                    $$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
                    $$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
                    $$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
                    and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?






                    share|cite|improve this answer
























                      10












                      10








                      10






                      HINT: Notice that
                      $$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
                      Now we just have to evaluate the integrals
                      $$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
                      $$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
                      $$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
                      and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?






                      share|cite|improve this answer












                      HINT: Notice that
                      $$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
                      Now we just have to evaluate the integrals
                      $$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
                      $$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
                      $$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
                      and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Dec 18 at 15:26









                      Frpzzd

                      21.9k839107




                      21.9k839107























                          2














                          The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$






                          share|cite|improve this answer


























                            2














                            The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$






                            share|cite|improve this answer
























                              2












                              2








                              2






                              The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$






                              share|cite|improve this answer












                              The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Dec 18 at 15:30









                              william122

                              52412




                              52412























                                  1














                                  Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.






                                  share|cite|improve this answer


























                                    1














                                    Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.






                                    share|cite|improve this answer
























                                      1












                                      1








                                      1






                                      Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.






                                      share|cite|improve this answer












                                      Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Dec 18 at 15:28









                                      Mindlack

                                      1,27717




                                      1,27717






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.





                                          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                          Please pay close attention to the following guidance:


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045282%2ffind-the-value-of-1-frac17-frac19-frac115-frac117-frac1%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Morgemoulin

                                          Scott Moir

                                          Souastre