Find the value of $1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}…$
Find the value of this :$$1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}....$$
Try: We can write the above series as
$${S} = int^{1}_{0}bigg[1-x^6+x^8-x^{14}+x^{16}-x^{22}+cdotsbigg]dx$$
$$S = int^{1}_{0}(1-x^6)bigg[1+x^{8}+x^{16}+cdots cdots bigg]dx$$
So $$S = int^{1}_{0}frac{1-x^6}{1-x^{8}}dx = int^{1}_{0}frac{x^4+x^2+1}{(x^2+1)(x^4+1)}dx$$
Now i am struck in that integration.
Did not understand how to solve it
could some help me to solve it. Thanks in advance
integration sequences-and-series definite-integrals
|
show 2 more comments
Find the value of this :$$1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}....$$
Try: We can write the above series as
$${S} = int^{1}_{0}bigg[1-x^6+x^8-x^{14}+x^{16}-x^{22}+cdotsbigg]dx$$
$$S = int^{1}_{0}(1-x^6)bigg[1+x^{8}+x^{16}+cdots cdots bigg]dx$$
So $$S = int^{1}_{0}frac{1-x^6}{1-x^{8}}dx = int^{1}_{0}frac{x^4+x^2+1}{(x^2+1)(x^4+1)}dx$$
Now i am struck in that integration.
Did not understand how to solve it
could some help me to solve it. Thanks in advance
integration sequences-and-series definite-integrals
Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
– Michael Burr
Dec 18 at 15:24
2
Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
– lab bhattacharjee
Dec 18 at 15:25
1
See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
– lab bhattacharjee
Dec 18 at 15:26
Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
– crskhr
Dec 18 at 15:28
1
@Stockfish: Absolutely convergent series.
– Clayton
Dec 18 at 15:32
|
show 2 more comments
Find the value of this :$$1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}....$$
Try: We can write the above series as
$${S} = int^{1}_{0}bigg[1-x^6+x^8-x^{14}+x^{16}-x^{22}+cdotsbigg]dx$$
$$S = int^{1}_{0}(1-x^6)bigg[1+x^{8}+x^{16}+cdots cdots bigg]dx$$
So $$S = int^{1}_{0}frac{1-x^6}{1-x^{8}}dx = int^{1}_{0}frac{x^4+x^2+1}{(x^2+1)(x^4+1)}dx$$
Now i am struck in that integration.
Did not understand how to solve it
could some help me to solve it. Thanks in advance
integration sequences-and-series definite-integrals
Find the value of this :$$1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}....$$
Try: We can write the above series as
$${S} = int^{1}_{0}bigg[1-x^6+x^8-x^{14}+x^{16}-x^{22}+cdotsbigg]dx$$
$$S = int^{1}_{0}(1-x^6)bigg[1+x^{8}+x^{16}+cdots cdots bigg]dx$$
So $$S = int^{1}_{0}frac{1-x^6}{1-x^{8}}dx = int^{1}_{0}frac{x^4+x^2+1}{(x^2+1)(x^4+1)}dx$$
Now i am struck in that integration.
Did not understand how to solve it
could some help me to solve it. Thanks in advance
integration sequences-and-series definite-integrals
integration sequences-and-series definite-integrals
edited Dec 19 at 6:04
Asaf Karagila♦
301k32424755
301k32424755
asked Dec 18 at 15:20
D Tiwari
5,3052630
5,3052630
Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
– Michael Burr
Dec 18 at 15:24
2
Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
– lab bhattacharjee
Dec 18 at 15:25
1
See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
– lab bhattacharjee
Dec 18 at 15:26
Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
– crskhr
Dec 18 at 15:28
1
@Stockfish: Absolutely convergent series.
– Clayton
Dec 18 at 15:32
|
show 2 more comments
Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
– Michael Burr
Dec 18 at 15:24
2
Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
– lab bhattacharjee
Dec 18 at 15:25
1
See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
– lab bhattacharjee
Dec 18 at 15:26
Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
– crskhr
Dec 18 at 15:28
1
@Stockfish: Absolutely convergent series.
– Clayton
Dec 18 at 15:32
Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
– Michael Burr
Dec 18 at 15:24
Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
– Michael Burr
Dec 18 at 15:24
2
2
Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
– lab bhattacharjee
Dec 18 at 15:25
Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
– lab bhattacharjee
Dec 18 at 15:25
1
1
See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
– lab bhattacharjee
Dec 18 at 15:26
See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
– lab bhattacharjee
Dec 18 at 15:26
Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
– crskhr
Dec 18 at 15:28
Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
– crskhr
Dec 18 at 15:28
1
1
@Stockfish: Absolutely convergent series.
– Clayton
Dec 18 at 15:32
@Stockfish: Absolutely convergent series.
– Clayton
Dec 18 at 15:32
|
show 2 more comments
4 Answers
4
active
oldest
votes
Another approach, which could be useful to check yours through integrals,
is same as per the similar post, using the Digamma function $psi (z)$.
$$
eqalign{
& 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
& = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
& = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
& = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
& = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
& = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
$$
where:
$$
Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
$$
is the functional equation for the Digamma;
which implies that Digamma is the Antidelta of $1/z$
$$
eqalign{
& psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
& Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
$$
and we used the Reflection formula for Digamma
$$
psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
$$
Now, the above, suggests a way to solve the integral.
Let's replace $x^8$ with $y$
$$
int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
= limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
$$
then consider that we have
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
& = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
- left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
$$
so we are ready to use the integral and Gamma representation for the Beta function
$$
eqalign{
& 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
- int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {Gamma left( {1/8 + varepsilon } right)}}
- {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
+ Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
- {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
- left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = psi left( {7/8} right) - psi left( {1/8} right) cr}
$$
which is the same result as above.
Let me add a more straight derivation of the above.
We rewrite the integrand as
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
& = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
$$
and compare with the integral representation of Digamma
$$
psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
$$
add a comment |
HINT: Notice that
$$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
Now we just have to evaluate the integrals
$$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
$$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
$$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?
add a comment |
The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$
add a comment |
Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045282%2ffind-the-value-of-1-frac17-frac19-frac115-frac117-frac1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
Another approach, which could be useful to check yours through integrals,
is same as per the similar post, using the Digamma function $psi (z)$.
$$
eqalign{
& 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
& = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
& = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
& = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
& = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
& = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
$$
where:
$$
Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
$$
is the functional equation for the Digamma;
which implies that Digamma is the Antidelta of $1/z$
$$
eqalign{
& psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
& Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
$$
and we used the Reflection formula for Digamma
$$
psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
$$
Now, the above, suggests a way to solve the integral.
Let's replace $x^8$ with $y$
$$
int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
= limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
$$
then consider that we have
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
& = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
- left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
$$
so we are ready to use the integral and Gamma representation for the Beta function
$$
eqalign{
& 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
- int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {Gamma left( {1/8 + varepsilon } right)}}
- {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
+ Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
- {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
- left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = psi left( {7/8} right) - psi left( {1/8} right) cr}
$$
which is the same result as above.
Let me add a more straight derivation of the above.
We rewrite the integrand as
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
& = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
$$
and compare with the integral representation of Digamma
$$
psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
$$
add a comment |
Another approach, which could be useful to check yours through integrals,
is same as per the similar post, using the Digamma function $psi (z)$.
$$
eqalign{
& 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
& = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
& = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
& = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
& = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
& = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
$$
where:
$$
Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
$$
is the functional equation for the Digamma;
which implies that Digamma is the Antidelta of $1/z$
$$
eqalign{
& psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
& Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
$$
and we used the Reflection formula for Digamma
$$
psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
$$
Now, the above, suggests a way to solve the integral.
Let's replace $x^8$ with $y$
$$
int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
= limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
$$
then consider that we have
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
& = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
- left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
$$
so we are ready to use the integral and Gamma representation for the Beta function
$$
eqalign{
& 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
- int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {Gamma left( {1/8 + varepsilon } right)}}
- {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
+ Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
- {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
- left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = psi left( {7/8} right) - psi left( {1/8} right) cr}
$$
which is the same result as above.
Let me add a more straight derivation of the above.
We rewrite the integrand as
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
& = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
$$
and compare with the integral representation of Digamma
$$
psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
$$
add a comment |
Another approach, which could be useful to check yours through integrals,
is same as per the similar post, using the Digamma function $psi (z)$.
$$
eqalign{
& 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
& = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
& = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
& = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
& = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
& = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
$$
where:
$$
Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
$$
is the functional equation for the Digamma;
which implies that Digamma is the Antidelta of $1/z$
$$
eqalign{
& psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
& Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
$$
and we used the Reflection formula for Digamma
$$
psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
$$
Now, the above, suggests a way to solve the integral.
Let's replace $x^8$ with $y$
$$
int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
= limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
$$
then consider that we have
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
& = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
- left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
$$
so we are ready to use the integral and Gamma representation for the Beta function
$$
eqalign{
& 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
- int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {Gamma left( {1/8 + varepsilon } right)}}
- {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
+ Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
- {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
- left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = psi left( {7/8} right) - psi left( {1/8} right) cr}
$$
which is the same result as above.
Let me add a more straight derivation of the above.
We rewrite the integrand as
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
& = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
$$
and compare with the integral representation of Digamma
$$
psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
$$
Another approach, which could be useful to check yours through integrals,
is same as per the similar post, using the Digamma function $psi (z)$.
$$
eqalign{
& 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
& = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
& = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
& = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
& = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
& = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
$$
where:
$$
Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
$$
is the functional equation for the Digamma;
which implies that Digamma is the Antidelta of $1/z$
$$
eqalign{
& psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
& Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
$$
and we used the Reflection formula for Digamma
$$
psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
$$
Now, the above, suggests a way to solve the integral.
Let's replace $x^8$ with $y$
$$
int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
= limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
$$
then consider that we have
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
& = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
- left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
$$
so we are ready to use the integral and Gamma representation for the Beta function
$$
eqalign{
& 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
- int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {Gamma left( {1/8 + varepsilon } right)}}
- {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
+ Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
- {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
- left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = psi left( {7/8} right) - psi left( {1/8} right) cr}
$$
which is the same result as above.
Let me add a more straight derivation of the above.
We rewrite the integrand as
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
& = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
$$
and compare with the integral representation of Digamma
$$
psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
$$
edited Dec 18 at 22:24
answered Dec 18 at 16:19
G Cab
17.9k31237
17.9k31237
add a comment |
add a comment |
HINT: Notice that
$$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
Now we just have to evaluate the integrals
$$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
$$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
$$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?
add a comment |
HINT: Notice that
$$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
Now we just have to evaluate the integrals
$$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
$$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
$$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?
add a comment |
HINT: Notice that
$$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
Now we just have to evaluate the integrals
$$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
$$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
$$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?
HINT: Notice that
$$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
Now we just have to evaluate the integrals
$$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
$$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
$$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?
answered Dec 18 at 15:26
Frpzzd
21.9k839107
21.9k839107
add a comment |
add a comment |
The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$
add a comment |
The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$
add a comment |
The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$
The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$
answered Dec 18 at 15:30
william122
52412
52412
add a comment |
add a comment |
Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.
add a comment |
Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.
add a comment |
Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.
Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.
answered Dec 18 at 15:28
Mindlack
1,27717
1,27717
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045282%2ffind-the-value-of-1-frac17-frac19-frac115-frac117-frac1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
– Michael Burr
Dec 18 at 15:24
2
Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
– lab bhattacharjee
Dec 18 at 15:25
1
See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
– lab bhattacharjee
Dec 18 at 15:26
Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
– crskhr
Dec 18 at 15:28
1
@Stockfish: Absolutely convergent series.
– Clayton
Dec 18 at 15:32