Could “live” video be transmitted from Mars?











up vote
15
down vote

favorite
1












With the approach of InSight to Mars today, and the two cubesats watching it, much is being made about seeing "Live Video" from the cubesats. I'm pretty sure that simply can't happen, but I'm wondering if the technology to broadcast live video actually exists, if there was a camcorder on one of the missions already at Mars. Could live video be transmitted (IE, is there a capability to get the required bandwidth at a distance of Mars), and received on Earth in a legible format (After speed of light transmission delays, of course)



If not, then what would it take to make this actually happen?










share|improve this question




















  • 2




    It depends on what the meaning of "exists" is. By exists, do you mean you'll allow for a few years to put it into a new satellite and put it in orbit around Mars or on the surface, or that it would have to use the satellites and landers already present at Mars?
    – uhoh
    2 days ago






  • 8




    What do you mean? Are you asking about bandwidth? Speed of light? Power? Nyquist–Shannon? Compression? -1 for asking an extremely unclear question then answering it yourself with the answer you were looking for without give others clear direction as to what you were looking for.
    – Sam
    2 days ago












  • Mostly the bandwidth.
    – PearsonArtPhoto
    2 days ago






  • 1




    The two cubesats allow for live telemetry relay, not video. Useful, especially if something were to go wrong during descent. (Without the cubesats, InSight would've had to save its telemetry and upload after a successful landing.)
    – ceejayoz
    2 days ago






  • 4




    Agree with @Sam. I can't even guess what information you might possibly be looking for just from reading. Youd don't clarify what limitations you have in mind, you don't clarify what you expect to happen, you don't clarify what research you've done on the issue. There's just nothing in the question that gives anyone context to answer. Would happily downvote if I could and have flagged for closure as Unclear.
    – jpmc26
    2 days ago

















up vote
15
down vote

favorite
1












With the approach of InSight to Mars today, and the two cubesats watching it, much is being made about seeing "Live Video" from the cubesats. I'm pretty sure that simply can't happen, but I'm wondering if the technology to broadcast live video actually exists, if there was a camcorder on one of the missions already at Mars. Could live video be transmitted (IE, is there a capability to get the required bandwidth at a distance of Mars), and received on Earth in a legible format (After speed of light transmission delays, of course)



If not, then what would it take to make this actually happen?










share|improve this question




















  • 2




    It depends on what the meaning of "exists" is. By exists, do you mean you'll allow for a few years to put it into a new satellite and put it in orbit around Mars or on the surface, or that it would have to use the satellites and landers already present at Mars?
    – uhoh
    2 days ago






  • 8




    What do you mean? Are you asking about bandwidth? Speed of light? Power? Nyquist–Shannon? Compression? -1 for asking an extremely unclear question then answering it yourself with the answer you were looking for without give others clear direction as to what you were looking for.
    – Sam
    2 days ago












  • Mostly the bandwidth.
    – PearsonArtPhoto
    2 days ago






  • 1




    The two cubesats allow for live telemetry relay, not video. Useful, especially if something were to go wrong during descent. (Without the cubesats, InSight would've had to save its telemetry and upload after a successful landing.)
    – ceejayoz
    2 days ago






  • 4




    Agree with @Sam. I can't even guess what information you might possibly be looking for just from reading. Youd don't clarify what limitations you have in mind, you don't clarify what you expect to happen, you don't clarify what research you've done on the issue. There's just nothing in the question that gives anyone context to answer. Would happily downvote if I could and have flagged for closure as Unclear.
    – jpmc26
    2 days ago















up vote
15
down vote

favorite
1









up vote
15
down vote

favorite
1






1





With the approach of InSight to Mars today, and the two cubesats watching it, much is being made about seeing "Live Video" from the cubesats. I'm pretty sure that simply can't happen, but I'm wondering if the technology to broadcast live video actually exists, if there was a camcorder on one of the missions already at Mars. Could live video be transmitted (IE, is there a capability to get the required bandwidth at a distance of Mars), and received on Earth in a legible format (After speed of light transmission delays, of course)



If not, then what would it take to make this actually happen?










share|improve this question















With the approach of InSight to Mars today, and the two cubesats watching it, much is being made about seeing "Live Video" from the cubesats. I'm pretty sure that simply can't happen, but I'm wondering if the technology to broadcast live video actually exists, if there was a camcorder on one of the missions already at Mars. Could live video be transmitted (IE, is there a capability to get the required bandwidth at a distance of Mars), and received on Earth in a legible format (After speed of light transmission delays, of course)



If not, then what would it take to make this actually happen?







mars communication video bandwidth






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 16 hours ago

























asked 2 days ago









PearsonArtPhoto

78.8k16222431




78.8k16222431








  • 2




    It depends on what the meaning of "exists" is. By exists, do you mean you'll allow for a few years to put it into a new satellite and put it in orbit around Mars or on the surface, or that it would have to use the satellites and landers already present at Mars?
    – uhoh
    2 days ago






  • 8




    What do you mean? Are you asking about bandwidth? Speed of light? Power? Nyquist–Shannon? Compression? -1 for asking an extremely unclear question then answering it yourself with the answer you were looking for without give others clear direction as to what you were looking for.
    – Sam
    2 days ago












  • Mostly the bandwidth.
    – PearsonArtPhoto
    2 days ago






  • 1




    The two cubesats allow for live telemetry relay, not video. Useful, especially if something were to go wrong during descent. (Without the cubesats, InSight would've had to save its telemetry and upload after a successful landing.)
    – ceejayoz
    2 days ago






  • 4




    Agree with @Sam. I can't even guess what information you might possibly be looking for just from reading. Youd don't clarify what limitations you have in mind, you don't clarify what you expect to happen, you don't clarify what research you've done on the issue. There's just nothing in the question that gives anyone context to answer. Would happily downvote if I could and have flagged for closure as Unclear.
    – jpmc26
    2 days ago
















  • 2




    It depends on what the meaning of "exists" is. By exists, do you mean you'll allow for a few years to put it into a new satellite and put it in orbit around Mars or on the surface, or that it would have to use the satellites and landers already present at Mars?
    – uhoh
    2 days ago






  • 8




    What do you mean? Are you asking about bandwidth? Speed of light? Power? Nyquist–Shannon? Compression? -1 for asking an extremely unclear question then answering it yourself with the answer you were looking for without give others clear direction as to what you were looking for.
    – Sam
    2 days ago












  • Mostly the bandwidth.
    – PearsonArtPhoto
    2 days ago






  • 1




    The two cubesats allow for live telemetry relay, not video. Useful, especially if something were to go wrong during descent. (Without the cubesats, InSight would've had to save its telemetry and upload after a successful landing.)
    – ceejayoz
    2 days ago






  • 4




    Agree with @Sam. I can't even guess what information you might possibly be looking for just from reading. Youd don't clarify what limitations you have in mind, you don't clarify what you expect to happen, you don't clarify what research you've done on the issue. There's just nothing in the question that gives anyone context to answer. Would happily downvote if I could and have flagged for closure as Unclear.
    – jpmc26
    2 days ago










2




2




It depends on what the meaning of "exists" is. By exists, do you mean you'll allow for a few years to put it into a new satellite and put it in orbit around Mars or on the surface, or that it would have to use the satellites and landers already present at Mars?
– uhoh
2 days ago




It depends on what the meaning of "exists" is. By exists, do you mean you'll allow for a few years to put it into a new satellite and put it in orbit around Mars or on the surface, or that it would have to use the satellites and landers already present at Mars?
– uhoh
2 days ago




8




8




What do you mean? Are you asking about bandwidth? Speed of light? Power? Nyquist–Shannon? Compression? -1 for asking an extremely unclear question then answering it yourself with the answer you were looking for without give others clear direction as to what you were looking for.
– Sam
2 days ago






What do you mean? Are you asking about bandwidth? Speed of light? Power? Nyquist–Shannon? Compression? -1 for asking an extremely unclear question then answering it yourself with the answer you were looking for without give others clear direction as to what you were looking for.
– Sam
2 days ago














Mostly the bandwidth.
– PearsonArtPhoto
2 days ago




Mostly the bandwidth.
– PearsonArtPhoto
2 days ago




1




1




The two cubesats allow for live telemetry relay, not video. Useful, especially if something were to go wrong during descent. (Without the cubesats, InSight would've had to save its telemetry and upload after a successful landing.)
– ceejayoz
2 days ago




The two cubesats allow for live telemetry relay, not video. Useful, especially if something were to go wrong during descent. (Without the cubesats, InSight would've had to save its telemetry and upload after a successful landing.)
– ceejayoz
2 days ago




4




4




Agree with @Sam. I can't even guess what information you might possibly be looking for just from reading. Youd don't clarify what limitations you have in mind, you don't clarify what you expect to happen, you don't clarify what research you've done on the issue. There's just nothing in the question that gives anyone context to answer. Would happily downvote if I could and have flagged for closure as Unclear.
– jpmc26
2 days ago






Agree with @Sam. I can't even guess what information you might possibly be looking for just from reading. Youd don't clarify what limitations you have in mind, you don't clarify what you expect to happen, you don't clarify what research you've done on the issue. There's just nothing in the question that gives anyone context to answer. Would happily downvote if I could and have flagged for closure as Unclear.
– jpmc26
2 days ago












3 Answers
3






active

oldest

votes

















up vote
16
down vote













It turns out that for the closest that Mars is to Earth, MRO can transmit at 4.0 Megabits/ second on Ka band. That is enough for standard definition video. So something a bit bigger then MRO could easily transmit video, although only when the two planets are close to each other.






share|improve this answer





















  • Not sure which antenna they are using, but as NASA uses DSN, and that is either a 35m or 70m antenna, there simply isn't a lot of room for a larger antenna. It could be done, but...
    – PearsonArtPhoto
    2 days ago










  • MRO high-gain antenna is 3m in diameter - mars.nasa.gov/mro/mission/spacecraft/parts/antennas
    – Jacob Krall
    2 days ago






  • 2




    With enough CPU power for video compression (h.264, h.265, or VP9), good quality 1280x720p30 is very possible at that bitrate. Or depending on how compressible the video is (jerky hand-held imagery with lots of detail in focus tends to be the most difficult), 1080p is also possible. The more CPU time you spend, the better the quality-per-bitrate tradeoff is. This can come at some cost in latency, but that's totally negligible vs. the speed-of-light delay. You could totally break live video up to encode 15-second chunks in parallel, encoding at 1/4 real-time on 4 computers for high quality.
    – Peter Cordes
    2 days ago










  • From a cubesat with a limited power / CPU budget, a fixed-function hardware video encoder like you find in modern video cards and cell phones could do a reasonable job at 4Mbps for 720p content. Presumably the scene would be fairly low motion (and/or consistent motion of everything, so motion vectors for one block predict motion for neighbouring block), so be easy-ish to encode (not take a lot of bitrate for good quality). Depending on the scene, 1Mb/s can be sufficient for youtube quality levels.
    – Peter Cordes
    2 days ago








  • 1




    @PeterCordes right, although I wonder how an off-the-shelf hardware video encoder with no radiation hardening or anything would still work after the journey to Mars! That in itself (for such a non-critical part of the mission) would be interesting to see.
    – leftaroundabout
    yesterday


















up vote
7
down vote













For example, this answer shows the math behind the Voyagers being noise limited with a ~1 kHz bandwidth at 20 billion kilometers. At 100 million km, a Voyager sized antenna with a few Watts would make a signal at earth 46 dB stronger, so you would be noise-limited around (40 MHz) with the 70m dish and receiver with a NEP of 20 Kelvin. These are handwavingly rough numbers, but some kind of reasonable video is possible with existing and not even new technology. But the logistics of making it happen is still a challenge.



The noise-limited bandwidth scales roughly linearly, so if you had 100 W to transmit for 7 minutes, in that case no problem!






share|improve this answer























  • Could laser based communication help in securing a wider bandwidth?
    – karthikeyan
    2 days ago










  • @karthikeyan I'm not sure if the "existing technology" requirement applies there. X-band microwaves get to the Earth just fine, day or night, clear or cloudy. Optical needs good night-time weather or a receiver in orbit. These things need to be built, but in principle it could work. How is long-distance optical communications coming along in space? and also Are there plans or a program for an optical relay pathfinder for deep space?
    – uhoh
    2 days ago












  • @karthikeyan Something more recent, but not for deep space yet: Yet another OSIRIS! Has the DLR/GOM Space test of the cubesat optical communications link happened yet?
    – uhoh
    2 days ago






  • 1




    @karthikeyan My answer is based on X-band and that's that. If you like, you are welcome to add an additional optical answer. Don't forget to include a discussion of how it uses existing technology, not just existing knowledge.
    – uhoh
    2 days ago








  • 1




    I'll consider adding some, if I could find authoritative references
    – karthikeyan
    2 days ago


















up vote
6
down vote













Worth mentioning that it takes 3 to 22 minutes for light to reach one of these planets from the other.



And no transmission can exceed light speed, barring a huge overhaul of Physics as we know it.



No equipment ever could have the signal here in less than three minutes.



Any affirmative answers are using a definition of "live" that allows for minutes-long delays.






share|improve this answer

















  • 4




    This is true, I didn't mean to include speed of light delay to preventing live. I meant video that is sent in real time from the spacecraft, of course it can't be received in real time.
    – PearsonArtPhoto
    2 days ago










  • Or a coordinate system in which light travels from Mars to Earth instantaneously.
    – Acccumulation
    2 days ago






  • 10




    Using this answer, to be pedantic, there's no such thing as "live" anything, as it takes a finite amount of time for a photon to travel so much as one plank length.
    – Phil
    2 days ago










  • @Phil since this also applies to witnessing an event in person, one reasonable definition of "live" would be an audiovisual experience equivalent to being there.
    – Emilio M Bumachar
    yesterday











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "508"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f32295%2fcould-live-video-be-transmitted-from-mars%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
16
down vote













It turns out that for the closest that Mars is to Earth, MRO can transmit at 4.0 Megabits/ second on Ka band. That is enough for standard definition video. So something a bit bigger then MRO could easily transmit video, although only when the two planets are close to each other.






share|improve this answer





















  • Not sure which antenna they are using, but as NASA uses DSN, and that is either a 35m or 70m antenna, there simply isn't a lot of room for a larger antenna. It could be done, but...
    – PearsonArtPhoto
    2 days ago










  • MRO high-gain antenna is 3m in diameter - mars.nasa.gov/mro/mission/spacecraft/parts/antennas
    – Jacob Krall
    2 days ago






  • 2




    With enough CPU power for video compression (h.264, h.265, or VP9), good quality 1280x720p30 is very possible at that bitrate. Or depending on how compressible the video is (jerky hand-held imagery with lots of detail in focus tends to be the most difficult), 1080p is also possible. The more CPU time you spend, the better the quality-per-bitrate tradeoff is. This can come at some cost in latency, but that's totally negligible vs. the speed-of-light delay. You could totally break live video up to encode 15-second chunks in parallel, encoding at 1/4 real-time on 4 computers for high quality.
    – Peter Cordes
    2 days ago










  • From a cubesat with a limited power / CPU budget, a fixed-function hardware video encoder like you find in modern video cards and cell phones could do a reasonable job at 4Mbps for 720p content. Presumably the scene would be fairly low motion (and/or consistent motion of everything, so motion vectors for one block predict motion for neighbouring block), so be easy-ish to encode (not take a lot of bitrate for good quality). Depending on the scene, 1Mb/s can be sufficient for youtube quality levels.
    – Peter Cordes
    2 days ago








  • 1




    @PeterCordes right, although I wonder how an off-the-shelf hardware video encoder with no radiation hardening or anything would still work after the journey to Mars! That in itself (for such a non-critical part of the mission) would be interesting to see.
    – leftaroundabout
    yesterday















up vote
16
down vote













It turns out that for the closest that Mars is to Earth, MRO can transmit at 4.0 Megabits/ second on Ka band. That is enough for standard definition video. So something a bit bigger then MRO could easily transmit video, although only when the two planets are close to each other.






share|improve this answer





















  • Not sure which antenna they are using, but as NASA uses DSN, and that is either a 35m or 70m antenna, there simply isn't a lot of room for a larger antenna. It could be done, but...
    – PearsonArtPhoto
    2 days ago










  • MRO high-gain antenna is 3m in diameter - mars.nasa.gov/mro/mission/spacecraft/parts/antennas
    – Jacob Krall
    2 days ago






  • 2




    With enough CPU power for video compression (h.264, h.265, or VP9), good quality 1280x720p30 is very possible at that bitrate. Or depending on how compressible the video is (jerky hand-held imagery with lots of detail in focus tends to be the most difficult), 1080p is also possible. The more CPU time you spend, the better the quality-per-bitrate tradeoff is. This can come at some cost in latency, but that's totally negligible vs. the speed-of-light delay. You could totally break live video up to encode 15-second chunks in parallel, encoding at 1/4 real-time on 4 computers for high quality.
    – Peter Cordes
    2 days ago










  • From a cubesat with a limited power / CPU budget, a fixed-function hardware video encoder like you find in modern video cards and cell phones could do a reasonable job at 4Mbps for 720p content. Presumably the scene would be fairly low motion (and/or consistent motion of everything, so motion vectors for one block predict motion for neighbouring block), so be easy-ish to encode (not take a lot of bitrate for good quality). Depending on the scene, 1Mb/s can be sufficient for youtube quality levels.
    – Peter Cordes
    2 days ago








  • 1




    @PeterCordes right, although I wonder how an off-the-shelf hardware video encoder with no radiation hardening or anything would still work after the journey to Mars! That in itself (for such a non-critical part of the mission) would be interesting to see.
    – leftaroundabout
    yesterday













up vote
16
down vote










up vote
16
down vote









It turns out that for the closest that Mars is to Earth, MRO can transmit at 4.0 Megabits/ second on Ka band. That is enough for standard definition video. So something a bit bigger then MRO could easily transmit video, although only when the two planets are close to each other.






share|improve this answer












It turns out that for the closest that Mars is to Earth, MRO can transmit at 4.0 Megabits/ second on Ka band. That is enough for standard definition video. So something a bit bigger then MRO could easily transmit video, although only when the two planets are close to each other.







share|improve this answer












share|improve this answer



share|improve this answer










answered 2 days ago









PearsonArtPhoto

78.8k16222431




78.8k16222431












  • Not sure which antenna they are using, but as NASA uses DSN, and that is either a 35m or 70m antenna, there simply isn't a lot of room for a larger antenna. It could be done, but...
    – PearsonArtPhoto
    2 days ago










  • MRO high-gain antenna is 3m in diameter - mars.nasa.gov/mro/mission/spacecraft/parts/antennas
    – Jacob Krall
    2 days ago






  • 2




    With enough CPU power for video compression (h.264, h.265, or VP9), good quality 1280x720p30 is very possible at that bitrate. Or depending on how compressible the video is (jerky hand-held imagery with lots of detail in focus tends to be the most difficult), 1080p is also possible. The more CPU time you spend, the better the quality-per-bitrate tradeoff is. This can come at some cost in latency, but that's totally negligible vs. the speed-of-light delay. You could totally break live video up to encode 15-second chunks in parallel, encoding at 1/4 real-time on 4 computers for high quality.
    – Peter Cordes
    2 days ago










  • From a cubesat with a limited power / CPU budget, a fixed-function hardware video encoder like you find in modern video cards and cell phones could do a reasonable job at 4Mbps for 720p content. Presumably the scene would be fairly low motion (and/or consistent motion of everything, so motion vectors for one block predict motion for neighbouring block), so be easy-ish to encode (not take a lot of bitrate for good quality). Depending on the scene, 1Mb/s can be sufficient for youtube quality levels.
    – Peter Cordes
    2 days ago








  • 1




    @PeterCordes right, although I wonder how an off-the-shelf hardware video encoder with no radiation hardening or anything would still work after the journey to Mars! That in itself (for such a non-critical part of the mission) would be interesting to see.
    – leftaroundabout
    yesterday


















  • Not sure which antenna they are using, but as NASA uses DSN, and that is either a 35m or 70m antenna, there simply isn't a lot of room for a larger antenna. It could be done, but...
    – PearsonArtPhoto
    2 days ago










  • MRO high-gain antenna is 3m in diameter - mars.nasa.gov/mro/mission/spacecraft/parts/antennas
    – Jacob Krall
    2 days ago






  • 2




    With enough CPU power for video compression (h.264, h.265, or VP9), good quality 1280x720p30 is very possible at that bitrate. Or depending on how compressible the video is (jerky hand-held imagery with lots of detail in focus tends to be the most difficult), 1080p is also possible. The more CPU time you spend, the better the quality-per-bitrate tradeoff is. This can come at some cost in latency, but that's totally negligible vs. the speed-of-light delay. You could totally break live video up to encode 15-second chunks in parallel, encoding at 1/4 real-time on 4 computers for high quality.
    – Peter Cordes
    2 days ago










  • From a cubesat with a limited power / CPU budget, a fixed-function hardware video encoder like you find in modern video cards and cell phones could do a reasonable job at 4Mbps for 720p content. Presumably the scene would be fairly low motion (and/or consistent motion of everything, so motion vectors for one block predict motion for neighbouring block), so be easy-ish to encode (not take a lot of bitrate for good quality). Depending on the scene, 1Mb/s can be sufficient for youtube quality levels.
    – Peter Cordes
    2 days ago








  • 1




    @PeterCordes right, although I wonder how an off-the-shelf hardware video encoder with no radiation hardening or anything would still work after the journey to Mars! That in itself (for such a non-critical part of the mission) would be interesting to see.
    – leftaroundabout
    yesterday
















Not sure which antenna they are using, but as NASA uses DSN, and that is either a 35m or 70m antenna, there simply isn't a lot of room for a larger antenna. It could be done, but...
– PearsonArtPhoto
2 days ago




Not sure which antenna they are using, but as NASA uses DSN, and that is either a 35m or 70m antenna, there simply isn't a lot of room for a larger antenna. It could be done, but...
– PearsonArtPhoto
2 days ago












MRO high-gain antenna is 3m in diameter - mars.nasa.gov/mro/mission/spacecraft/parts/antennas
– Jacob Krall
2 days ago




MRO high-gain antenna is 3m in diameter - mars.nasa.gov/mro/mission/spacecraft/parts/antennas
– Jacob Krall
2 days ago




2




2




With enough CPU power for video compression (h.264, h.265, or VP9), good quality 1280x720p30 is very possible at that bitrate. Or depending on how compressible the video is (jerky hand-held imagery with lots of detail in focus tends to be the most difficult), 1080p is also possible. The more CPU time you spend, the better the quality-per-bitrate tradeoff is. This can come at some cost in latency, but that's totally negligible vs. the speed-of-light delay. You could totally break live video up to encode 15-second chunks in parallel, encoding at 1/4 real-time on 4 computers for high quality.
– Peter Cordes
2 days ago




With enough CPU power for video compression (h.264, h.265, or VP9), good quality 1280x720p30 is very possible at that bitrate. Or depending on how compressible the video is (jerky hand-held imagery with lots of detail in focus tends to be the most difficult), 1080p is also possible. The more CPU time you spend, the better the quality-per-bitrate tradeoff is. This can come at some cost in latency, but that's totally negligible vs. the speed-of-light delay. You could totally break live video up to encode 15-second chunks in parallel, encoding at 1/4 real-time on 4 computers for high quality.
– Peter Cordes
2 days ago












From a cubesat with a limited power / CPU budget, a fixed-function hardware video encoder like you find in modern video cards and cell phones could do a reasonable job at 4Mbps for 720p content. Presumably the scene would be fairly low motion (and/or consistent motion of everything, so motion vectors for one block predict motion for neighbouring block), so be easy-ish to encode (not take a lot of bitrate for good quality). Depending on the scene, 1Mb/s can be sufficient for youtube quality levels.
– Peter Cordes
2 days ago






From a cubesat with a limited power / CPU budget, a fixed-function hardware video encoder like you find in modern video cards and cell phones could do a reasonable job at 4Mbps for 720p content. Presumably the scene would be fairly low motion (and/or consistent motion of everything, so motion vectors for one block predict motion for neighbouring block), so be easy-ish to encode (not take a lot of bitrate for good quality). Depending on the scene, 1Mb/s can be sufficient for youtube quality levels.
– Peter Cordes
2 days ago






1




1




@PeterCordes right, although I wonder how an off-the-shelf hardware video encoder with no radiation hardening or anything would still work after the journey to Mars! That in itself (for such a non-critical part of the mission) would be interesting to see.
– leftaroundabout
yesterday




@PeterCordes right, although I wonder how an off-the-shelf hardware video encoder with no radiation hardening or anything would still work after the journey to Mars! That in itself (for such a non-critical part of the mission) would be interesting to see.
– leftaroundabout
yesterday










up vote
7
down vote













For example, this answer shows the math behind the Voyagers being noise limited with a ~1 kHz bandwidth at 20 billion kilometers. At 100 million km, a Voyager sized antenna with a few Watts would make a signal at earth 46 dB stronger, so you would be noise-limited around (40 MHz) with the 70m dish and receiver with a NEP of 20 Kelvin. These are handwavingly rough numbers, but some kind of reasonable video is possible with existing and not even new technology. But the logistics of making it happen is still a challenge.



The noise-limited bandwidth scales roughly linearly, so if you had 100 W to transmit for 7 minutes, in that case no problem!






share|improve this answer























  • Could laser based communication help in securing a wider bandwidth?
    – karthikeyan
    2 days ago










  • @karthikeyan I'm not sure if the "existing technology" requirement applies there. X-band microwaves get to the Earth just fine, day or night, clear or cloudy. Optical needs good night-time weather or a receiver in orbit. These things need to be built, but in principle it could work. How is long-distance optical communications coming along in space? and also Are there plans or a program for an optical relay pathfinder for deep space?
    – uhoh
    2 days ago












  • @karthikeyan Something more recent, but not for deep space yet: Yet another OSIRIS! Has the DLR/GOM Space test of the cubesat optical communications link happened yet?
    – uhoh
    2 days ago






  • 1




    @karthikeyan My answer is based on X-band and that's that. If you like, you are welcome to add an additional optical answer. Don't forget to include a discussion of how it uses existing technology, not just existing knowledge.
    – uhoh
    2 days ago








  • 1




    I'll consider adding some, if I could find authoritative references
    – karthikeyan
    2 days ago















up vote
7
down vote













For example, this answer shows the math behind the Voyagers being noise limited with a ~1 kHz bandwidth at 20 billion kilometers. At 100 million km, a Voyager sized antenna with a few Watts would make a signal at earth 46 dB stronger, so you would be noise-limited around (40 MHz) with the 70m dish and receiver with a NEP of 20 Kelvin. These are handwavingly rough numbers, but some kind of reasonable video is possible with existing and not even new technology. But the logistics of making it happen is still a challenge.



The noise-limited bandwidth scales roughly linearly, so if you had 100 W to transmit for 7 minutes, in that case no problem!






share|improve this answer























  • Could laser based communication help in securing a wider bandwidth?
    – karthikeyan
    2 days ago










  • @karthikeyan I'm not sure if the "existing technology" requirement applies there. X-band microwaves get to the Earth just fine, day or night, clear or cloudy. Optical needs good night-time weather or a receiver in orbit. These things need to be built, but in principle it could work. How is long-distance optical communications coming along in space? and also Are there plans or a program for an optical relay pathfinder for deep space?
    – uhoh
    2 days ago












  • @karthikeyan Something more recent, but not for deep space yet: Yet another OSIRIS! Has the DLR/GOM Space test of the cubesat optical communications link happened yet?
    – uhoh
    2 days ago






  • 1




    @karthikeyan My answer is based on X-band and that's that. If you like, you are welcome to add an additional optical answer. Don't forget to include a discussion of how it uses existing technology, not just existing knowledge.
    – uhoh
    2 days ago








  • 1




    I'll consider adding some, if I could find authoritative references
    – karthikeyan
    2 days ago













up vote
7
down vote










up vote
7
down vote









For example, this answer shows the math behind the Voyagers being noise limited with a ~1 kHz bandwidth at 20 billion kilometers. At 100 million km, a Voyager sized antenna with a few Watts would make a signal at earth 46 dB stronger, so you would be noise-limited around (40 MHz) with the 70m dish and receiver with a NEP of 20 Kelvin. These are handwavingly rough numbers, but some kind of reasonable video is possible with existing and not even new technology. But the logistics of making it happen is still a challenge.



The noise-limited bandwidth scales roughly linearly, so if you had 100 W to transmit for 7 minutes, in that case no problem!






share|improve this answer














For example, this answer shows the math behind the Voyagers being noise limited with a ~1 kHz bandwidth at 20 billion kilometers. At 100 million km, a Voyager sized antenna with a few Watts would make a signal at earth 46 dB stronger, so you would be noise-limited around (40 MHz) with the 70m dish and receiver with a NEP of 20 Kelvin. These are handwavingly rough numbers, but some kind of reasonable video is possible with existing and not even new technology. But the logistics of making it happen is still a challenge.



The noise-limited bandwidth scales roughly linearly, so if you had 100 W to transmit for 7 minutes, in that case no problem!







share|improve this answer














share|improve this answer



share|improve this answer








edited 2 days ago

























answered 2 days ago









uhoh

32.9k16112404




32.9k16112404












  • Could laser based communication help in securing a wider bandwidth?
    – karthikeyan
    2 days ago










  • @karthikeyan I'm not sure if the "existing technology" requirement applies there. X-band microwaves get to the Earth just fine, day or night, clear or cloudy. Optical needs good night-time weather or a receiver in orbit. These things need to be built, but in principle it could work. How is long-distance optical communications coming along in space? and also Are there plans or a program for an optical relay pathfinder for deep space?
    – uhoh
    2 days ago












  • @karthikeyan Something more recent, but not for deep space yet: Yet another OSIRIS! Has the DLR/GOM Space test of the cubesat optical communications link happened yet?
    – uhoh
    2 days ago






  • 1




    @karthikeyan My answer is based on X-band and that's that. If you like, you are welcome to add an additional optical answer. Don't forget to include a discussion of how it uses existing technology, not just existing knowledge.
    – uhoh
    2 days ago








  • 1




    I'll consider adding some, if I could find authoritative references
    – karthikeyan
    2 days ago


















  • Could laser based communication help in securing a wider bandwidth?
    – karthikeyan
    2 days ago










  • @karthikeyan I'm not sure if the "existing technology" requirement applies there. X-band microwaves get to the Earth just fine, day or night, clear or cloudy. Optical needs good night-time weather or a receiver in orbit. These things need to be built, but in principle it could work. How is long-distance optical communications coming along in space? and also Are there plans or a program for an optical relay pathfinder for deep space?
    – uhoh
    2 days ago












  • @karthikeyan Something more recent, but not for deep space yet: Yet another OSIRIS! Has the DLR/GOM Space test of the cubesat optical communications link happened yet?
    – uhoh
    2 days ago






  • 1




    @karthikeyan My answer is based on X-band and that's that. If you like, you are welcome to add an additional optical answer. Don't forget to include a discussion of how it uses existing technology, not just existing knowledge.
    – uhoh
    2 days ago








  • 1




    I'll consider adding some, if I could find authoritative references
    – karthikeyan
    2 days ago
















Could laser based communication help in securing a wider bandwidth?
– karthikeyan
2 days ago




Could laser based communication help in securing a wider bandwidth?
– karthikeyan
2 days ago












@karthikeyan I'm not sure if the "existing technology" requirement applies there. X-band microwaves get to the Earth just fine, day or night, clear or cloudy. Optical needs good night-time weather or a receiver in orbit. These things need to be built, but in principle it could work. How is long-distance optical communications coming along in space? and also Are there plans or a program for an optical relay pathfinder for deep space?
– uhoh
2 days ago






@karthikeyan I'm not sure if the "existing technology" requirement applies there. X-band microwaves get to the Earth just fine, day or night, clear or cloudy. Optical needs good night-time weather or a receiver in orbit. These things need to be built, but in principle it could work. How is long-distance optical communications coming along in space? and also Are there plans or a program for an optical relay pathfinder for deep space?
– uhoh
2 days ago














@karthikeyan Something more recent, but not for deep space yet: Yet another OSIRIS! Has the DLR/GOM Space test of the cubesat optical communications link happened yet?
– uhoh
2 days ago




@karthikeyan Something more recent, but not for deep space yet: Yet another OSIRIS! Has the DLR/GOM Space test of the cubesat optical communications link happened yet?
– uhoh
2 days ago




1




1




@karthikeyan My answer is based on X-band and that's that. If you like, you are welcome to add an additional optical answer. Don't forget to include a discussion of how it uses existing technology, not just existing knowledge.
– uhoh
2 days ago






@karthikeyan My answer is based on X-band and that's that. If you like, you are welcome to add an additional optical answer. Don't forget to include a discussion of how it uses existing technology, not just existing knowledge.
– uhoh
2 days ago






1




1




I'll consider adding some, if I could find authoritative references
– karthikeyan
2 days ago




I'll consider adding some, if I could find authoritative references
– karthikeyan
2 days ago










up vote
6
down vote













Worth mentioning that it takes 3 to 22 minutes for light to reach one of these planets from the other.



And no transmission can exceed light speed, barring a huge overhaul of Physics as we know it.



No equipment ever could have the signal here in less than three minutes.



Any affirmative answers are using a definition of "live" that allows for minutes-long delays.






share|improve this answer

















  • 4




    This is true, I didn't mean to include speed of light delay to preventing live. I meant video that is sent in real time from the spacecraft, of course it can't be received in real time.
    – PearsonArtPhoto
    2 days ago










  • Or a coordinate system in which light travels from Mars to Earth instantaneously.
    – Acccumulation
    2 days ago






  • 10




    Using this answer, to be pedantic, there's no such thing as "live" anything, as it takes a finite amount of time for a photon to travel so much as one plank length.
    – Phil
    2 days ago










  • @Phil since this also applies to witnessing an event in person, one reasonable definition of "live" would be an audiovisual experience equivalent to being there.
    – Emilio M Bumachar
    yesterday















up vote
6
down vote













Worth mentioning that it takes 3 to 22 minutes for light to reach one of these planets from the other.



And no transmission can exceed light speed, barring a huge overhaul of Physics as we know it.



No equipment ever could have the signal here in less than three minutes.



Any affirmative answers are using a definition of "live" that allows for minutes-long delays.






share|improve this answer

















  • 4




    This is true, I didn't mean to include speed of light delay to preventing live. I meant video that is sent in real time from the spacecraft, of course it can't be received in real time.
    – PearsonArtPhoto
    2 days ago










  • Or a coordinate system in which light travels from Mars to Earth instantaneously.
    – Acccumulation
    2 days ago






  • 10




    Using this answer, to be pedantic, there's no such thing as "live" anything, as it takes a finite amount of time for a photon to travel so much as one plank length.
    – Phil
    2 days ago










  • @Phil since this also applies to witnessing an event in person, one reasonable definition of "live" would be an audiovisual experience equivalent to being there.
    – Emilio M Bumachar
    yesterday













up vote
6
down vote










up vote
6
down vote









Worth mentioning that it takes 3 to 22 minutes for light to reach one of these planets from the other.



And no transmission can exceed light speed, barring a huge overhaul of Physics as we know it.



No equipment ever could have the signal here in less than three minutes.



Any affirmative answers are using a definition of "live" that allows for minutes-long delays.






share|improve this answer












Worth mentioning that it takes 3 to 22 minutes for light to reach one of these planets from the other.



And no transmission can exceed light speed, barring a huge overhaul of Physics as we know it.



No equipment ever could have the signal here in less than three minutes.



Any affirmative answers are using a definition of "live" that allows for minutes-long delays.







share|improve this answer












share|improve this answer



share|improve this answer










answered 2 days ago









Emilio M Bumachar

4751410




4751410








  • 4




    This is true, I didn't mean to include speed of light delay to preventing live. I meant video that is sent in real time from the spacecraft, of course it can't be received in real time.
    – PearsonArtPhoto
    2 days ago










  • Or a coordinate system in which light travels from Mars to Earth instantaneously.
    – Acccumulation
    2 days ago






  • 10




    Using this answer, to be pedantic, there's no such thing as "live" anything, as it takes a finite amount of time for a photon to travel so much as one plank length.
    – Phil
    2 days ago










  • @Phil since this also applies to witnessing an event in person, one reasonable definition of "live" would be an audiovisual experience equivalent to being there.
    – Emilio M Bumachar
    yesterday














  • 4




    This is true, I didn't mean to include speed of light delay to preventing live. I meant video that is sent in real time from the spacecraft, of course it can't be received in real time.
    – PearsonArtPhoto
    2 days ago










  • Or a coordinate system in which light travels from Mars to Earth instantaneously.
    – Acccumulation
    2 days ago






  • 10




    Using this answer, to be pedantic, there's no such thing as "live" anything, as it takes a finite amount of time for a photon to travel so much as one plank length.
    – Phil
    2 days ago










  • @Phil since this also applies to witnessing an event in person, one reasonable definition of "live" would be an audiovisual experience equivalent to being there.
    – Emilio M Bumachar
    yesterday








4




4




This is true, I didn't mean to include speed of light delay to preventing live. I meant video that is sent in real time from the spacecraft, of course it can't be received in real time.
– PearsonArtPhoto
2 days ago




This is true, I didn't mean to include speed of light delay to preventing live. I meant video that is sent in real time from the spacecraft, of course it can't be received in real time.
– PearsonArtPhoto
2 days ago












Or a coordinate system in which light travels from Mars to Earth instantaneously.
– Acccumulation
2 days ago




Or a coordinate system in which light travels from Mars to Earth instantaneously.
– Acccumulation
2 days ago




10




10




Using this answer, to be pedantic, there's no such thing as "live" anything, as it takes a finite amount of time for a photon to travel so much as one plank length.
– Phil
2 days ago




Using this answer, to be pedantic, there's no such thing as "live" anything, as it takes a finite amount of time for a photon to travel so much as one plank length.
– Phil
2 days ago












@Phil since this also applies to witnessing an event in person, one reasonable definition of "live" would be an audiovisual experience equivalent to being there.
– Emilio M Bumachar
yesterday




@Phil since this also applies to witnessing an event in person, one reasonable definition of "live" would be an audiovisual experience equivalent to being there.
– Emilio M Bumachar
yesterday


















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f32295%2fcould-live-video-be-transmitted-from-mars%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Morgemoulin

Scott Moir

Souastre