A Difficult Definite Integral $int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$
Problem
Evaluate $$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$$
Comment
It's very complicated to compute the integral applying normal method. I obtain the result resorting to the skillful formula
$$int_0^{2pi}xf(cos x){rm d}x=piint_0^{2pi}f(sin x){rm d}x,$$
where $f(x) in C[-1,1].$
begin{align*}
require{begingroup}
begingroup
newcommand{dd}{;{rm d}}int_0^{2pi} (t-sin t)(1-cos t)^2 dd t
&= int_0^{2pi} t(1-cos t)^2 dd t - int_0^{2pi} sin t(1-cos t)^2 dd t \
&= piint_0^{2pi} (1-sin t)^2 dd t - int_0^{2pi} (1-cos t)^2 dd (1-cos t) \
&= piint_0^{2pi} left(frac32-frac12cos2t-2sin tright) dd t - left[frac13(1-cos t)^3right]_0^{2pi}\
&= pileft[frac32t-frac14sin2t+2cos tright]_0^{2pi}\
&= 3pi^2
endgroup
end{align*}
But any other solution?
integration definite-integrals trigonometric-integrals
add a comment |
Problem
Evaluate $$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$$
Comment
It's very complicated to compute the integral applying normal method. I obtain the result resorting to the skillful formula
$$int_0^{2pi}xf(cos x){rm d}x=piint_0^{2pi}f(sin x){rm d}x,$$
where $f(x) in C[-1,1].$
begin{align*}
require{begingroup}
begingroup
newcommand{dd}{;{rm d}}int_0^{2pi} (t-sin t)(1-cos t)^2 dd t
&= int_0^{2pi} t(1-cos t)^2 dd t - int_0^{2pi} sin t(1-cos t)^2 dd t \
&= piint_0^{2pi} (1-sin t)^2 dd t - int_0^{2pi} (1-cos t)^2 dd (1-cos t) \
&= piint_0^{2pi} left(frac32-frac12cos2t-2sin tright) dd t - left[frac13(1-cos t)^3right]_0^{2pi}\
&= pileft[frac32t-frac14sin2t+2cos tright]_0^{2pi}\
&= 3pi^2
endgroup
end{align*}
But any other solution?
integration definite-integrals trigonometric-integrals
add a comment |
Problem
Evaluate $$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$$
Comment
It's very complicated to compute the integral applying normal method. I obtain the result resorting to the skillful formula
$$int_0^{2pi}xf(cos x){rm d}x=piint_0^{2pi}f(sin x){rm d}x,$$
where $f(x) in C[-1,1].$
begin{align*}
require{begingroup}
begingroup
newcommand{dd}{;{rm d}}int_0^{2pi} (t-sin t)(1-cos t)^2 dd t
&= int_0^{2pi} t(1-cos t)^2 dd t - int_0^{2pi} sin t(1-cos t)^2 dd t \
&= piint_0^{2pi} (1-sin t)^2 dd t - int_0^{2pi} (1-cos t)^2 dd (1-cos t) \
&= piint_0^{2pi} left(frac32-frac12cos2t-2sin tright) dd t - left[frac13(1-cos t)^3right]_0^{2pi}\
&= pileft[frac32t-frac14sin2t+2cos tright]_0^{2pi}\
&= 3pi^2
endgroup
end{align*}
But any other solution?
integration definite-integrals trigonometric-integrals
Problem
Evaluate $$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$$
Comment
It's very complicated to compute the integral applying normal method. I obtain the result resorting to the skillful formula
$$int_0^{2pi}xf(cos x){rm d}x=piint_0^{2pi}f(sin x){rm d}x,$$
where $f(x) in C[-1,1].$
begin{align*}
require{begingroup}
begingroup
newcommand{dd}{;{rm d}}int_0^{2pi} (t-sin t)(1-cos t)^2 dd t
&= int_0^{2pi} t(1-cos t)^2 dd t - int_0^{2pi} sin t(1-cos t)^2 dd t \
&= piint_0^{2pi} (1-sin t)^2 dd t - int_0^{2pi} (1-cos t)^2 dd (1-cos t) \
&= piint_0^{2pi} left(frac32-frac12cos2t-2sin tright) dd t - left[frac13(1-cos t)^3right]_0^{2pi}\
&= pileft[frac32t-frac14sin2t+2cos tright]_0^{2pi}\
&= 3pi^2
endgroup
end{align*}
But any other solution?
integration definite-integrals trigonometric-integrals
integration definite-integrals trigonometric-integrals
edited 43 mins ago
Martin Sleziak
44.6k7115270
44.6k7115270
asked 3 hours ago
mengdie1982
4,777618
4,777618
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
With substitution $t=pi+x$ we see that
$$I=int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_{-pi}^{pi}(pi+x+sin x)(1+cos x)^2{rm d}x.$$
the part $(x+sin x)(1+cos x)^2$ is an odd function so it's integral over $[-pi,pi]$ is zero, then
$$I=piint_{-pi}^{pi}(1+cos x)^2{rm d}x=piint_{-pi}^{pi}dfrac32+2cos x+dfrac12cos2x{rm d}x=color{blue}{3pi^2}$$
add a comment |
Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
$$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
begin{align}
int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
&= int_0^{2pi} xf(x),dx \
&= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
&= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
end{align}
Now recall the formula for the $x$-coordinate of the centroid:
$$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$
since centroid is clearly at $x = pi$ by symmetry.
Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$
this integral being a lot easier than the original one.
It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$
add a comment |
The integral
$$
int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
$$
is immediate. Thus we can concentrate on
$$
int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
$$
For integer $a$, we have
$$
int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
$$
Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
$$
int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
$$
add a comment |
$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t=frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2t=frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 t=3pi ^2$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054898%2fa-difficult-definite-integral-int-02-pit-sin-t1-cos-t2-rm-dt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
With substitution $t=pi+x$ we see that
$$I=int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_{-pi}^{pi}(pi+x+sin x)(1+cos x)^2{rm d}x.$$
the part $(x+sin x)(1+cos x)^2$ is an odd function so it's integral over $[-pi,pi]$ is zero, then
$$I=piint_{-pi}^{pi}(1+cos x)^2{rm d}x=piint_{-pi}^{pi}dfrac32+2cos x+dfrac12cos2x{rm d}x=color{blue}{3pi^2}$$
add a comment |
With substitution $t=pi+x$ we see that
$$I=int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_{-pi}^{pi}(pi+x+sin x)(1+cos x)^2{rm d}x.$$
the part $(x+sin x)(1+cos x)^2$ is an odd function so it's integral over $[-pi,pi]$ is zero, then
$$I=piint_{-pi}^{pi}(1+cos x)^2{rm d}x=piint_{-pi}^{pi}dfrac32+2cos x+dfrac12cos2x{rm d}x=color{blue}{3pi^2}$$
add a comment |
With substitution $t=pi+x$ we see that
$$I=int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_{-pi}^{pi}(pi+x+sin x)(1+cos x)^2{rm d}x.$$
the part $(x+sin x)(1+cos x)^2$ is an odd function so it's integral over $[-pi,pi]$ is zero, then
$$I=piint_{-pi}^{pi}(1+cos x)^2{rm d}x=piint_{-pi}^{pi}dfrac32+2cos x+dfrac12cos2x{rm d}x=color{blue}{3pi^2}$$
With substitution $t=pi+x$ we see that
$$I=int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_{-pi}^{pi}(pi+x+sin x)(1+cos x)^2{rm d}x.$$
the part $(x+sin x)(1+cos x)^2$ is an odd function so it's integral over $[-pi,pi]$ is zero, then
$$I=piint_{-pi}^{pi}(1+cos x)^2{rm d}x=piint_{-pi}^{pi}dfrac32+2cos x+dfrac12cos2x{rm d}x=color{blue}{3pi^2}$$
answered 48 mins ago
Nosrati
26.5k62353
26.5k62353
add a comment |
add a comment |
Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
$$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
begin{align}
int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
&= int_0^{2pi} xf(x),dx \
&= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
&= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
end{align}
Now recall the formula for the $x$-coordinate of the centroid:
$$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$
since centroid is clearly at $x = pi$ by symmetry.
Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$
this integral being a lot easier than the original one.
It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$
add a comment |
Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
$$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
begin{align}
int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
&= int_0^{2pi} xf(x),dx \
&= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
&= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
end{align}
Now recall the formula for the $x$-coordinate of the centroid:
$$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$
since centroid is clearly at $x = pi$ by symmetry.
Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$
this integral being a lot easier than the original one.
It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$
add a comment |
Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
$$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
begin{align}
int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
&= int_0^{2pi} xf(x),dx \
&= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
&= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
end{align}
Now recall the formula for the $x$-coordinate of the centroid:
$$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$
since centroid is clearly at $x = pi$ by symmetry.
Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$
this integral being a lot easier than the original one.
It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$
Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
$$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
begin{align}
int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
&= int_0^{2pi} xf(x),dx \
&= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
&= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
end{align}
Now recall the formula for the $x$-coordinate of the centroid:
$$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$
since centroid is clearly at $x = pi$ by symmetry.
Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$
this integral being a lot easier than the original one.
It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$
edited 2 hours ago
answered 2 hours ago
mechanodroid
25.9k62245
25.9k62245
add a comment |
add a comment |
The integral
$$
int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
$$
is immediate. Thus we can concentrate on
$$
int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
$$
For integer $a$, we have
$$
int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
$$
Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
$$
int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
$$
add a comment |
The integral
$$
int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
$$
is immediate. Thus we can concentrate on
$$
int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
$$
For integer $a$, we have
$$
int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
$$
Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
$$
int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
$$
add a comment |
The integral
$$
int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
$$
is immediate. Thus we can concentrate on
$$
int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
$$
For integer $a$, we have
$$
int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
$$
Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
$$
int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
$$
The integral
$$
int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
$$
is immediate. Thus we can concentrate on
$$
int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
$$
For integer $a$, we have
$$
int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
$$
Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
$$
int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
$$
answered 1 hour ago
egreg
178k1484200
178k1484200
add a comment |
add a comment |
$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t=frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2t=frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 t=3pi ^2$
add a comment |
$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t=frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2t=frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 t=3pi ^2$
add a comment |
$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t=frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2t=frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 t=3pi ^2$
$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t=frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2t=frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 t=3pi ^2$
answered 3 hours ago
yavar
643
643
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054898%2fa-difficult-definite-integral-int-02-pit-sin-t1-cos-t2-rm-dt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown