A Difficult Definite Integral $int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$












3














Problem



Evaluate $$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$$



Comment



It's very complicated to compute the integral applying normal method. I obtain the result resorting to the skillful formula




$$int_0^{2pi}xf(cos x){rm d}x=piint_0^{2pi}f(sin x){rm d}x,$$
where $f(x) in C[-1,1].$




begin{align*}
require{begingroup}
begingroup
newcommand{dd}{;{rm d}}int_0^{2pi} (t-sin t)(1-cos t)^2 dd t
&= int_0^{2pi} t(1-cos t)^2 dd t - int_0^{2pi} sin t(1-cos t)^2 dd t \
&= piint_0^{2pi} (1-sin t)^2 dd t - int_0^{2pi} (1-cos t)^2 dd (1-cos t) \
&= piint_0^{2pi} left(frac32-frac12cos2t-2sin tright) dd t - left[frac13(1-cos t)^3right]_0^{2pi}\
&= pileft[frac32t-frac14sin2t+2cos tright]_0^{2pi}\
&= 3pi^2
endgroup
end{align*}



But any other solution?










share|cite|improve this question





























    3














    Problem



    Evaluate $$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$$



    Comment



    It's very complicated to compute the integral applying normal method. I obtain the result resorting to the skillful formula




    $$int_0^{2pi}xf(cos x){rm d}x=piint_0^{2pi}f(sin x){rm d}x,$$
    where $f(x) in C[-1,1].$




    begin{align*}
    require{begingroup}
    begingroup
    newcommand{dd}{;{rm d}}int_0^{2pi} (t-sin t)(1-cos t)^2 dd t
    &= int_0^{2pi} t(1-cos t)^2 dd t - int_0^{2pi} sin t(1-cos t)^2 dd t \
    &= piint_0^{2pi} (1-sin t)^2 dd t - int_0^{2pi} (1-cos t)^2 dd (1-cos t) \
    &= piint_0^{2pi} left(frac32-frac12cos2t-2sin tright) dd t - left[frac13(1-cos t)^3right]_0^{2pi}\
    &= pileft[frac32t-frac14sin2t+2cos tright]_0^{2pi}\
    &= 3pi^2
    endgroup
    end{align*}



    But any other solution?










    share|cite|improve this question



























      3












      3








      3







      Problem



      Evaluate $$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$$



      Comment



      It's very complicated to compute the integral applying normal method. I obtain the result resorting to the skillful formula




      $$int_0^{2pi}xf(cos x){rm d}x=piint_0^{2pi}f(sin x){rm d}x,$$
      where $f(x) in C[-1,1].$




      begin{align*}
      require{begingroup}
      begingroup
      newcommand{dd}{;{rm d}}int_0^{2pi} (t-sin t)(1-cos t)^2 dd t
      &= int_0^{2pi} t(1-cos t)^2 dd t - int_0^{2pi} sin t(1-cos t)^2 dd t \
      &= piint_0^{2pi} (1-sin t)^2 dd t - int_0^{2pi} (1-cos t)^2 dd (1-cos t) \
      &= piint_0^{2pi} left(frac32-frac12cos2t-2sin tright) dd t - left[frac13(1-cos t)^3right]_0^{2pi}\
      &= pileft[frac32t-frac14sin2t+2cos tright]_0^{2pi}\
      &= 3pi^2
      endgroup
      end{align*}



      But any other solution?










      share|cite|improve this question















      Problem



      Evaluate $$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$$



      Comment



      It's very complicated to compute the integral applying normal method. I obtain the result resorting to the skillful formula




      $$int_0^{2pi}xf(cos x){rm d}x=piint_0^{2pi}f(sin x){rm d}x,$$
      where $f(x) in C[-1,1].$




      begin{align*}
      require{begingroup}
      begingroup
      newcommand{dd}{;{rm d}}int_0^{2pi} (t-sin t)(1-cos t)^2 dd t
      &= int_0^{2pi} t(1-cos t)^2 dd t - int_0^{2pi} sin t(1-cos t)^2 dd t \
      &= piint_0^{2pi} (1-sin t)^2 dd t - int_0^{2pi} (1-cos t)^2 dd (1-cos t) \
      &= piint_0^{2pi} left(frac32-frac12cos2t-2sin tright) dd t - left[frac13(1-cos t)^3right]_0^{2pi}\
      &= pileft[frac32t-frac14sin2t+2cos tright]_0^{2pi}\
      &= 3pi^2
      endgroup
      end{align*}



      But any other solution?







      integration definite-integrals trigonometric-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 43 mins ago









      Martin Sleziak

      44.6k7115270




      44.6k7115270










      asked 3 hours ago









      mengdie1982

      4,777618




      4,777618






















          4 Answers
          4






          active

          oldest

          votes


















          1














          With substitution $t=pi+x$ we see that
          $$I=int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_{-pi}^{pi}(pi+x+sin x)(1+cos x)^2{rm d}x.$$
          the part $(x+sin x)(1+cos x)^2$ is an odd function so it's integral over $[-pi,pi]$ is zero, then
          $$I=piint_{-pi}^{pi}(1+cos x)^2{rm d}x=piint_{-pi}^{pi}dfrac32+2cos x+dfrac12cos2x{rm d}x=color{blue}{3pi^2}$$






          share|cite|improve this answer





























            2














            Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
            $$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
            Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
            begin{align}
            int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
            &= int_0^{2pi} xf(x),dx \
            &= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
            &= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
            end{align}



            Now recall the formula for the $x$-coordinate of the centroid:
            $$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$



            since centroid is clearly at $x = pi$ by symmetry.



            Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$



            this integral being a lot easier than the original one.



            It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$






            share|cite|improve this answer































              1














              The integral
              $$
              int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
              $$

              is immediate. Thus we can concentrate on
              $$
              int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
              16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
              $$

              For integer $a$, we have
              $$
              int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
              $$

              Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
              $$
              int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
              $$






              share|cite|improve this answer





























                0














                $int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t=frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2t=frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 t=3pi ^2$






                share|cite|improve this answer





















                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054898%2fa-difficult-definite-integral-int-02-pit-sin-t1-cos-t2-rm-dt%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  1














                  With substitution $t=pi+x$ we see that
                  $$I=int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_{-pi}^{pi}(pi+x+sin x)(1+cos x)^2{rm d}x.$$
                  the part $(x+sin x)(1+cos x)^2$ is an odd function so it's integral over $[-pi,pi]$ is zero, then
                  $$I=piint_{-pi}^{pi}(1+cos x)^2{rm d}x=piint_{-pi}^{pi}dfrac32+2cos x+dfrac12cos2x{rm d}x=color{blue}{3pi^2}$$






                  share|cite|improve this answer


























                    1














                    With substitution $t=pi+x$ we see that
                    $$I=int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_{-pi}^{pi}(pi+x+sin x)(1+cos x)^2{rm d}x.$$
                    the part $(x+sin x)(1+cos x)^2$ is an odd function so it's integral over $[-pi,pi]$ is zero, then
                    $$I=piint_{-pi}^{pi}(1+cos x)^2{rm d}x=piint_{-pi}^{pi}dfrac32+2cos x+dfrac12cos2x{rm d}x=color{blue}{3pi^2}$$






                    share|cite|improve this answer
























                      1












                      1








                      1






                      With substitution $t=pi+x$ we see that
                      $$I=int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_{-pi}^{pi}(pi+x+sin x)(1+cos x)^2{rm d}x.$$
                      the part $(x+sin x)(1+cos x)^2$ is an odd function so it's integral over $[-pi,pi]$ is zero, then
                      $$I=piint_{-pi}^{pi}(1+cos x)^2{rm d}x=piint_{-pi}^{pi}dfrac32+2cos x+dfrac12cos2x{rm d}x=color{blue}{3pi^2}$$






                      share|cite|improve this answer












                      With substitution $t=pi+x$ we see that
                      $$I=int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_{-pi}^{pi}(pi+x+sin x)(1+cos x)^2{rm d}x.$$
                      the part $(x+sin x)(1+cos x)^2$ is an odd function so it's integral over $[-pi,pi]$ is zero, then
                      $$I=piint_{-pi}^{pi}(1+cos x)^2{rm d}x=piint_{-pi}^{pi}dfrac32+2cos x+dfrac12cos2x{rm d}x=color{blue}{3pi^2}$$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 48 mins ago









                      Nosrati

                      26.5k62353




                      26.5k62353























                          2














                          Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
                          $$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
                          Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
                          begin{align}
                          int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
                          &= int_0^{2pi} xf(x),dx \
                          &= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
                          &= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
                          end{align}



                          Now recall the formula for the $x$-coordinate of the centroid:
                          $$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$



                          since centroid is clearly at $x = pi$ by symmetry.



                          Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$



                          this integral being a lot easier than the original one.



                          It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$






                          share|cite|improve this answer




























                            2














                            Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
                            $$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
                            Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
                            begin{align}
                            int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
                            &= int_0^{2pi} xf(x),dx \
                            &= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
                            &= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
                            end{align}



                            Now recall the formula for the $x$-coordinate of the centroid:
                            $$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$



                            since centroid is clearly at $x = pi$ by symmetry.



                            Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$



                            this integral being a lot easier than the original one.



                            It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$






                            share|cite|improve this answer


























                              2












                              2








                              2






                              Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
                              $$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
                              Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
                              begin{align}
                              int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
                              &= int_0^{2pi} xf(x),dx \
                              &= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
                              &= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
                              end{align}



                              Now recall the formula for the $x$-coordinate of the centroid:
                              $$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$



                              since centroid is clearly at $x = pi$ by symmetry.



                              Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$



                              this integral being a lot easier than the original one.



                              It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$






                              share|cite|improve this answer














                              Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
                              $$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
                              Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
                              begin{align}
                              int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
                              &= int_0^{2pi} xf(x),dx \
                              &= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
                              &= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
                              end{align}



                              Now recall the formula for the $x$-coordinate of the centroid:
                              $$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$



                              since centroid is clearly at $x = pi$ by symmetry.



                              Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$



                              this integral being a lot easier than the original one.



                              It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited 2 hours ago

























                              answered 2 hours ago









                              mechanodroid

                              25.9k62245




                              25.9k62245























                                  1














                                  The integral
                                  $$
                                  int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
                                  $$

                                  is immediate. Thus we can concentrate on
                                  $$
                                  int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
                                  16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
                                  $$

                                  For integer $a$, we have
                                  $$
                                  int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
                                  $$

                                  Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
                                  $$
                                  int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
                                  $$






                                  share|cite|improve this answer


























                                    1














                                    The integral
                                    $$
                                    int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
                                    $$

                                    is immediate. Thus we can concentrate on
                                    $$
                                    int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
                                    16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
                                    $$

                                    For integer $a$, we have
                                    $$
                                    int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
                                    $$

                                    Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
                                    $$
                                    int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
                                    $$






                                    share|cite|improve this answer
























                                      1












                                      1








                                      1






                                      The integral
                                      $$
                                      int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
                                      $$

                                      is immediate. Thus we can concentrate on
                                      $$
                                      int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
                                      16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
                                      $$

                                      For integer $a$, we have
                                      $$
                                      int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
                                      $$

                                      Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
                                      $$
                                      int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
                                      $$






                                      share|cite|improve this answer












                                      The integral
                                      $$
                                      int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
                                      $$

                                      is immediate. Thus we can concentrate on
                                      $$
                                      int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
                                      16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
                                      $$

                                      For integer $a$, we have
                                      $$
                                      int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
                                      $$

                                      Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
                                      $$
                                      int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
                                      $$







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered 1 hour ago









                                      egreg

                                      178k1484200




                                      178k1484200























                                          0














                                          $int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t=frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2t=frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 t=3pi ^2$






                                          share|cite|improve this answer


























                                            0














                                            $int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t=frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2t=frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 t=3pi ^2$






                                            share|cite|improve this answer
























                                              0












                                              0








                                              0






                                              $int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t=frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2t=frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 t=3pi ^2$






                                              share|cite|improve this answer












                                              $int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t=frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2t=frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 t=3pi ^2$







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered 3 hours ago









                                              yavar

                                              643




                                              643






























                                                  draft saved

                                                  draft discarded




















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.





                                                  Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                                  Please pay close attention to the following guidance:


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054898%2fa-difficult-definite-integral-int-02-pit-sin-t1-cos-t2-rm-dt%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  Morgemoulin

                                                  Scott Moir

                                                  Souastre