Application of Sharman-Morrison for Scalability












0














I have a fully functioning code in R. At the moment I am inverting the matrix using Cholesky decomposition. I want to adopt the code for Sharman Morrison:



X<- matrix(rnorm(10000),20,20)
Y<-rnorm(20)

OSLOG<-function(X,Y,a){
if(a<=0){
print("a must be a positive number")
}else{
X<-as.matrix(X)
Y<-as.matrix(Y)
T<-nrow(X)
N<-ncol(X)
bt<- matrix(0,ncol=1,nrow=N)
At<- diag(0,N)
pred<- matrix(0,nrow=T,ncol=1)
theta0<- rep(1,N)
for (t in 1:T){
xt<-X[t,]
pred[t] <- crossprod(as.matrix(theta0), xt)
Dt <- diag(sqrt(abs(c(theta0))))
D <- outer(diag(Dt),diag(Dt))
At <- At + tcrossprod(xt,xt)
InvA <- chol2inv(chol(diag(a,N) + At*D))
bt <- bt + (Y[t] * xt)
theta0 <- crossprod(InvA *D,bt)
}
res<-postResample(pred = pred, obs = Y)
stats<- as.matrix(res)
quant<-quantile(as.matrix(Y)-as.matrix(pred),probs=c(.25,.50,.75))
return(list(predictions=pred,performance=stats,quantiles=quant))
}
}
OSLOG(X,Y,0.00001)$performance


The above code works perfectly well. Is it possible to use Sharman-Morrison in the above code? Also, any other thing I can do to improve performance?



My attempt



OSLOGb <- function(X,Y,a){
if(a <= 0){
print("a must be a positive number")
}else{
X <- as.matrix(X)
Y <- as.matrix(Y)
T <- nrow(X)
N <- ncol(X)
bt <- matrix(0,ncol=1,nrow=N)
At <- diag(1/a,N)
pred <- matrix(0,nrow=T,ncol=1)
theta0 <- rep(1,N)
for (t in 1:T){
xt <- X[t,]
pred[t] <- crossprod(as.matrix(theta0), xt)
Dt <- diag(sqrt(abs(c(theta0))))
D <- outer(diag(Dt),diag(Dt))
At <- At + tcrossprod(xt,xt)
At <- At - (tcrossprod(crossprod(At ,xt),crossprod(At,xt)) / as.numeric(crossprod(xt,crossprod(At,xt))+1))
bt <- bt + (Y[t] * xt)
theta0 <- crossprod(At * D ,bt)
}
res <- postResample(pred = pred, obs = Y)
stats<- as.matrix(res)
quant<-quantile(as.matrix(Y)-as.matrix(pred),probs=c(.25,.50,.75))
return(list(predictions=pred,performance=stats,quantiles=quant))
}
}
OSLOGb(X,Y,0.00001)$performance


Unfortunately, this is not the correct solution. Can someone help me with this?









share







New contributor




Jamil is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

























    0














    I have a fully functioning code in R. At the moment I am inverting the matrix using Cholesky decomposition. I want to adopt the code for Sharman Morrison:



    X<- matrix(rnorm(10000),20,20)
    Y<-rnorm(20)

    OSLOG<-function(X,Y,a){
    if(a<=0){
    print("a must be a positive number")
    }else{
    X<-as.matrix(X)
    Y<-as.matrix(Y)
    T<-nrow(X)
    N<-ncol(X)
    bt<- matrix(0,ncol=1,nrow=N)
    At<- diag(0,N)
    pred<- matrix(0,nrow=T,ncol=1)
    theta0<- rep(1,N)
    for (t in 1:T){
    xt<-X[t,]
    pred[t] <- crossprod(as.matrix(theta0), xt)
    Dt <- diag(sqrt(abs(c(theta0))))
    D <- outer(diag(Dt),diag(Dt))
    At <- At + tcrossprod(xt,xt)
    InvA <- chol2inv(chol(diag(a,N) + At*D))
    bt <- bt + (Y[t] * xt)
    theta0 <- crossprod(InvA *D,bt)
    }
    res<-postResample(pred = pred, obs = Y)
    stats<- as.matrix(res)
    quant<-quantile(as.matrix(Y)-as.matrix(pred),probs=c(.25,.50,.75))
    return(list(predictions=pred,performance=stats,quantiles=quant))
    }
    }
    OSLOG(X,Y,0.00001)$performance


    The above code works perfectly well. Is it possible to use Sharman-Morrison in the above code? Also, any other thing I can do to improve performance?



    My attempt



    OSLOGb <- function(X,Y,a){
    if(a <= 0){
    print("a must be a positive number")
    }else{
    X <- as.matrix(X)
    Y <- as.matrix(Y)
    T <- nrow(X)
    N <- ncol(X)
    bt <- matrix(0,ncol=1,nrow=N)
    At <- diag(1/a,N)
    pred <- matrix(0,nrow=T,ncol=1)
    theta0 <- rep(1,N)
    for (t in 1:T){
    xt <- X[t,]
    pred[t] <- crossprod(as.matrix(theta0), xt)
    Dt <- diag(sqrt(abs(c(theta0))))
    D <- outer(diag(Dt),diag(Dt))
    At <- At + tcrossprod(xt,xt)
    At <- At - (tcrossprod(crossprod(At ,xt),crossprod(At,xt)) / as.numeric(crossprod(xt,crossprod(At,xt))+1))
    bt <- bt + (Y[t] * xt)
    theta0 <- crossprod(At * D ,bt)
    }
    res <- postResample(pred = pred, obs = Y)
    stats<- as.matrix(res)
    quant<-quantile(as.matrix(Y)-as.matrix(pred),probs=c(.25,.50,.75))
    return(list(predictions=pred,performance=stats,quantiles=quant))
    }
    }
    OSLOGb(X,Y,0.00001)$performance


    Unfortunately, this is not the correct solution. Can someone help me with this?









    share







    New contributor




    Jamil is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.























      0












      0








      0







      I have a fully functioning code in R. At the moment I am inverting the matrix using Cholesky decomposition. I want to adopt the code for Sharman Morrison:



      X<- matrix(rnorm(10000),20,20)
      Y<-rnorm(20)

      OSLOG<-function(X,Y,a){
      if(a<=0){
      print("a must be a positive number")
      }else{
      X<-as.matrix(X)
      Y<-as.matrix(Y)
      T<-nrow(X)
      N<-ncol(X)
      bt<- matrix(0,ncol=1,nrow=N)
      At<- diag(0,N)
      pred<- matrix(0,nrow=T,ncol=1)
      theta0<- rep(1,N)
      for (t in 1:T){
      xt<-X[t,]
      pred[t] <- crossprod(as.matrix(theta0), xt)
      Dt <- diag(sqrt(abs(c(theta0))))
      D <- outer(diag(Dt),diag(Dt))
      At <- At + tcrossprod(xt,xt)
      InvA <- chol2inv(chol(diag(a,N) + At*D))
      bt <- bt + (Y[t] * xt)
      theta0 <- crossprod(InvA *D,bt)
      }
      res<-postResample(pred = pred, obs = Y)
      stats<- as.matrix(res)
      quant<-quantile(as.matrix(Y)-as.matrix(pred),probs=c(.25,.50,.75))
      return(list(predictions=pred,performance=stats,quantiles=quant))
      }
      }
      OSLOG(X,Y,0.00001)$performance


      The above code works perfectly well. Is it possible to use Sharman-Morrison in the above code? Also, any other thing I can do to improve performance?



      My attempt



      OSLOGb <- function(X,Y,a){
      if(a <= 0){
      print("a must be a positive number")
      }else{
      X <- as.matrix(X)
      Y <- as.matrix(Y)
      T <- nrow(X)
      N <- ncol(X)
      bt <- matrix(0,ncol=1,nrow=N)
      At <- diag(1/a,N)
      pred <- matrix(0,nrow=T,ncol=1)
      theta0 <- rep(1,N)
      for (t in 1:T){
      xt <- X[t,]
      pred[t] <- crossprod(as.matrix(theta0), xt)
      Dt <- diag(sqrt(abs(c(theta0))))
      D <- outer(diag(Dt),diag(Dt))
      At <- At + tcrossprod(xt,xt)
      At <- At - (tcrossprod(crossprod(At ,xt),crossprod(At,xt)) / as.numeric(crossprod(xt,crossprod(At,xt))+1))
      bt <- bt + (Y[t] * xt)
      theta0 <- crossprod(At * D ,bt)
      }
      res <- postResample(pred = pred, obs = Y)
      stats<- as.matrix(res)
      quant<-quantile(as.matrix(Y)-as.matrix(pred),probs=c(.25,.50,.75))
      return(list(predictions=pred,performance=stats,quantiles=quant))
      }
      }
      OSLOGb(X,Y,0.00001)$performance


      Unfortunately, this is not the correct solution. Can someone help me with this?









      share







      New contributor




      Jamil is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      I have a fully functioning code in R. At the moment I am inverting the matrix using Cholesky decomposition. I want to adopt the code for Sharman Morrison:



      X<- matrix(rnorm(10000),20,20)
      Y<-rnorm(20)

      OSLOG<-function(X,Y,a){
      if(a<=0){
      print("a must be a positive number")
      }else{
      X<-as.matrix(X)
      Y<-as.matrix(Y)
      T<-nrow(X)
      N<-ncol(X)
      bt<- matrix(0,ncol=1,nrow=N)
      At<- diag(0,N)
      pred<- matrix(0,nrow=T,ncol=1)
      theta0<- rep(1,N)
      for (t in 1:T){
      xt<-X[t,]
      pred[t] <- crossprod(as.matrix(theta0), xt)
      Dt <- diag(sqrt(abs(c(theta0))))
      D <- outer(diag(Dt),diag(Dt))
      At <- At + tcrossprod(xt,xt)
      InvA <- chol2inv(chol(diag(a,N) + At*D))
      bt <- bt + (Y[t] * xt)
      theta0 <- crossprod(InvA *D,bt)
      }
      res<-postResample(pred = pred, obs = Y)
      stats<- as.matrix(res)
      quant<-quantile(as.matrix(Y)-as.matrix(pred),probs=c(.25,.50,.75))
      return(list(predictions=pred,performance=stats,quantiles=quant))
      }
      }
      OSLOG(X,Y,0.00001)$performance


      The above code works perfectly well. Is it possible to use Sharman-Morrison in the above code? Also, any other thing I can do to improve performance?



      My attempt



      OSLOGb <- function(X,Y,a){
      if(a <= 0){
      print("a must be a positive number")
      }else{
      X <- as.matrix(X)
      Y <- as.matrix(Y)
      T <- nrow(X)
      N <- ncol(X)
      bt <- matrix(0,ncol=1,nrow=N)
      At <- diag(1/a,N)
      pred <- matrix(0,nrow=T,ncol=1)
      theta0 <- rep(1,N)
      for (t in 1:T){
      xt <- X[t,]
      pred[t] <- crossprod(as.matrix(theta0), xt)
      Dt <- diag(sqrt(abs(c(theta0))))
      D <- outer(diag(Dt),diag(Dt))
      At <- At + tcrossprod(xt,xt)
      At <- At - (tcrossprod(crossprod(At ,xt),crossprod(At,xt)) / as.numeric(crossprod(xt,crossprod(At,xt))+1))
      bt <- bt + (Y[t] * xt)
      theta0 <- crossprod(At * D ,bt)
      }
      res <- postResample(pred = pred, obs = Y)
      stats<- as.matrix(res)
      quant<-quantile(as.matrix(Y)-as.matrix(pred),probs=c(.25,.50,.75))
      return(list(predictions=pred,performance=stats,quantiles=quant))
      }
      }
      OSLOGb(X,Y,0.00001)$performance


      Unfortunately, this is not the correct solution. Can someone help me with this?







      performance r





      share







      New contributor




      Jamil is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share







      New contributor




      Jamil is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share



      share






      New contributor




      Jamil is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 3 mins ago









      Jamil

      1




      1




      New contributor




      Jamil is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Jamil is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Jamil is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "196"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          Jamil is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210299%2fapplication-of-sharman-morrison-for-scalability%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          Jamil is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          Jamil is a new contributor. Be nice, and check out our Code of Conduct.













          Jamil is a new contributor. Be nice, and check out our Code of Conduct.












          Jamil is a new contributor. Be nice, and check out our Code of Conduct.
















          Thanks for contributing an answer to Code Review Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210299%2fapplication-of-sharman-morrison-for-scalability%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Morgemoulin

          Scott Moir

          Souastre