Evaluating $sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$
Finding sum of series $$displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
Try: Let $$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
So, $$S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=frac1{3!}sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$$
with the help of identity $$B(m,n) = int^{1}_{0}x^m(1-x)^ndx = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}$$
$$B(m,n) = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}=frac{m!cdot n!}{(m+n+1)!}$$
So $$S=sum^{infty}_{k=0}(k+1)^2int^{1}_{0}(x)^{2k}(1-x)^3dx$$
$$S=int^{1}_{0}x^{-2}(1-x)^3sum^{infty}_{k=1}(kx^k)^2dx$$
Can someone explain me how to calculate $displaystyle sum^{infty}_{k=1}k^2x^{2k}$ in some short way . although I am trying to solve it but it is too lengthy.
Please explain to me ,thanks.
sequences-and-series
add a comment |
Finding sum of series $$displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
Try: Let $$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
So, $$S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=frac1{3!}sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$$
with the help of identity $$B(m,n) = int^{1}_{0}x^m(1-x)^ndx = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}$$
$$B(m,n) = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}=frac{m!cdot n!}{(m+n+1)!}$$
So $$S=sum^{infty}_{k=0}(k+1)^2int^{1}_{0}(x)^{2k}(1-x)^3dx$$
$$S=int^{1}_{0}x^{-2}(1-x)^3sum^{infty}_{k=1}(kx^k)^2dx$$
Can someone explain me how to calculate $displaystyle sum^{infty}_{k=1}k^2x^{2k}$ in some short way . although I am trying to solve it but it is too lengthy.
Please explain to me ,thanks.
sequences-and-series
Easier: Use partial fractions on the summand first, then sum.
– user10354138
Dec 16 at 7:55
1
There's an error in your third line, it should be $S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=1/3! sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$. Then you are looking for $S=1/3! sum^{infty}_{k=0}(k+1)^2int^{1}_{0}x^{2k}(1-x)^3dx = 1/3! int^{1}_{0}left[sum^{infty}_{k=1}k^2x^{2k}right] x^{-2}(1-x)^3dx$. You can then reuse the result of @symchdmath, and you're left with $1/6 int_0^1 frac{1+x^2}{(1+x)^3} dx$, which you can solve with partial fraction expansion.
– yoann
Dec 16 at 10:09
This series is already here: How to sum $frac1{1cdot 2cdot 3cdot 4} + frac4{3cdot 4cdot 5cdot 6} + frac9{5cdot 6cdot 7cdot 8} + cdots$ quickly?
– Sil
Dec 16 at 15:19
add a comment |
Finding sum of series $$displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
Try: Let $$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
So, $$S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=frac1{3!}sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$$
with the help of identity $$B(m,n) = int^{1}_{0}x^m(1-x)^ndx = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}$$
$$B(m,n) = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}=frac{m!cdot n!}{(m+n+1)!}$$
So $$S=sum^{infty}_{k=0}(k+1)^2int^{1}_{0}(x)^{2k}(1-x)^3dx$$
$$S=int^{1}_{0}x^{-2}(1-x)^3sum^{infty}_{k=1}(kx^k)^2dx$$
Can someone explain me how to calculate $displaystyle sum^{infty}_{k=1}k^2x^{2k}$ in some short way . although I am trying to solve it but it is too lengthy.
Please explain to me ,thanks.
sequences-and-series
Finding sum of series $$displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
Try: Let $$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$
So, $$S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=frac1{3!}sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$$
with the help of identity $$B(m,n) = int^{1}_{0}x^m(1-x)^ndx = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}$$
$$B(m,n) = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}=frac{m!cdot n!}{(m+n+1)!}$$
So $$S=sum^{infty}_{k=0}(k+1)^2int^{1}_{0}(x)^{2k}(1-x)^3dx$$
$$S=int^{1}_{0}x^{-2}(1-x)^3sum^{infty}_{k=1}(kx^k)^2dx$$
Can someone explain me how to calculate $displaystyle sum^{infty}_{k=1}k^2x^{2k}$ in some short way . although I am trying to solve it but it is too lengthy.
Please explain to me ,thanks.
sequences-and-series
sequences-and-series
edited Dec 16 at 15:08
StubbornAtom
5,26711138
5,26711138
asked Dec 16 at 7:47
D Tiwari
5,3002630
5,3002630
Easier: Use partial fractions on the summand first, then sum.
– user10354138
Dec 16 at 7:55
1
There's an error in your third line, it should be $S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=1/3! sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$. Then you are looking for $S=1/3! sum^{infty}_{k=0}(k+1)^2int^{1}_{0}x^{2k}(1-x)^3dx = 1/3! int^{1}_{0}left[sum^{infty}_{k=1}k^2x^{2k}right] x^{-2}(1-x)^3dx$. You can then reuse the result of @symchdmath, and you're left with $1/6 int_0^1 frac{1+x^2}{(1+x)^3} dx$, which you can solve with partial fraction expansion.
– yoann
Dec 16 at 10:09
This series is already here: How to sum $frac1{1cdot 2cdot 3cdot 4} + frac4{3cdot 4cdot 5cdot 6} + frac9{5cdot 6cdot 7cdot 8} + cdots$ quickly?
– Sil
Dec 16 at 15:19
add a comment |
Easier: Use partial fractions on the summand first, then sum.
– user10354138
Dec 16 at 7:55
1
There's an error in your third line, it should be $S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=1/3! sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$. Then you are looking for $S=1/3! sum^{infty}_{k=0}(k+1)^2int^{1}_{0}x^{2k}(1-x)^3dx = 1/3! int^{1}_{0}left[sum^{infty}_{k=1}k^2x^{2k}right] x^{-2}(1-x)^3dx$. You can then reuse the result of @symchdmath, and you're left with $1/6 int_0^1 frac{1+x^2}{(1+x)^3} dx$, which you can solve with partial fraction expansion.
– yoann
Dec 16 at 10:09
This series is already here: How to sum $frac1{1cdot 2cdot 3cdot 4} + frac4{3cdot 4cdot 5cdot 6} + frac9{5cdot 6cdot 7cdot 8} + cdots$ quickly?
– Sil
Dec 16 at 15:19
Easier: Use partial fractions on the summand first, then sum.
– user10354138
Dec 16 at 7:55
Easier: Use partial fractions on the summand first, then sum.
– user10354138
Dec 16 at 7:55
1
1
There's an error in your third line, it should be $S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=1/3! sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$. Then you are looking for $S=1/3! sum^{infty}_{k=0}(k+1)^2int^{1}_{0}x^{2k}(1-x)^3dx = 1/3! int^{1}_{0}left[sum^{infty}_{k=1}k^2x^{2k}right] x^{-2}(1-x)^3dx$. You can then reuse the result of @symchdmath, and you're left with $1/6 int_0^1 frac{1+x^2}{(1+x)^3} dx$, which you can solve with partial fraction expansion.
– yoann
Dec 16 at 10:09
There's an error in your third line, it should be $S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=1/3! sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$. Then you are looking for $S=1/3! sum^{infty}_{k=0}(k+1)^2int^{1}_{0}x^{2k}(1-x)^3dx = 1/3! int^{1}_{0}left[sum^{infty}_{k=1}k^2x^{2k}right] x^{-2}(1-x)^3dx$. You can then reuse the result of @symchdmath, and you're left with $1/6 int_0^1 frac{1+x^2}{(1+x)^3} dx$, which you can solve with partial fraction expansion.
– yoann
Dec 16 at 10:09
This series is already here: How to sum $frac1{1cdot 2cdot 3cdot 4} + frac4{3cdot 4cdot 5cdot 6} + frac9{5cdot 6cdot 7cdot 8} + cdots$ quickly?
– Sil
Dec 16 at 15:19
This series is already here: How to sum $frac1{1cdot 2cdot 3cdot 4} + frac4{3cdot 4cdot 5cdot 6} + frac9{5cdot 6cdot 7cdot 8} + cdots$ quickly?
– Sil
Dec 16 at 15:19
add a comment |
6 Answers
6
active
oldest
votes
Good so far, to finish the proof notice that,
$$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$
Differentiating,
$$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$
Multiply by $z$ then differentiate again,
$$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$
So we have that,
$$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$
Put in $z = x^2$ to obtain,
$$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$
The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.
add a comment |
I'm doing the final integration using symchdmath's result!
$$frac1{3!}int_0^1frac{x^{-2}(1-x)^3x^2(1+x^2)}{(1-x^2)^3}dx=frac1{3!}int_0^1frac{(1+x^2)}{(1+x)^3}dx=frac1{3!}int_0^1frac{(1+x)^2-2(x+1)+2}{(1+x)^3}dx$$
which when separated into individual terms becomes
$$frac1{3!}Bigg[int_0^1frac1{1+x}dx-2int_0^1frac1{(1+x)^2}dx+2int_0^1frac1{(1+x)^3}dxBigg]=frac1{3!}bigg(ln2-1+frac34bigg)=frac{4ln2-1}{24}$$
add a comment |
Too long for a comment.
In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
$$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
$$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
n^2}+Oleft(frac{1}{n^3}right)$$ For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.
add a comment |
Applying partial fractions along with the digamma function, we get that:
begin{align*}
sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
&= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
&=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
&= frac{1}{24} left ( log 16 -1 right ) \
& =frac{4 log 2 -1}{24}
end{align*}
This does not address the question, does it ? (I admit that the OP was unclear.)
– Yves Daoust
Dec 16 at 8:41
Well it does answer how to evaluate the series , but not how to continue with the OP's approach.
– Tolaso
Dec 16 at 11:28
add a comment |
An alternative way to evaluate the sum $sum_{k=1}^infty k^2 x^{2k}$ it is using finite calculus. Consider the indefinite sum $sum (k^underline 2+k) y^k,delta k$, then taking limits in this indefinite sum and substituting $y=x^2$ we recover your series, because $k^2=k^underline 2+k$, where $k^underline 2=k(k-1)$ is a falling factorial of order $2$.
In general it is easy to check that
$$sum k^underline m,delta k=frac{k^underline{m+1}}{m+1}+B,quadDelta_k k^underline m=mk^underline{m-1}\ sum c^k,delta k=frac{c^k}{c-1}+B,quad Delta_k c^k=(c-1) c^ktag1$$
where $B$ represent and arbitrary periodic function of period one and $c$ some arbitrary constant. Also we have the tool of summation by parts, that can be written as
$$sum f(k)Delta_k g(k), delta k=f(k)g(k)-sum g(k+1)Delta_k f(k),delta ktag2$$
Thus, coming back to our sum, we have that
$$sum (k^underline 2+k)y^k,delta k=frac1{y-1}y^k(k^underline 2+k)-frac1{y-1}sum y^{k+1}(2k+1),delta k\
=frac1{y-1}left(y^k(k^underline 2+k)-left(frac{y^{k+1}(2k+1)}{y-1}-frac1{y-1}sum y^{k+2}2,delta kright)right)\
=frac{y^k(k^underline 2+k)}{y-1}-frac{y^{k+1}(2k+1)}{(y-1)^2}+frac{y^{k+2}2}{(y-1)^3}$$
where we applied twice summation by parts and the identities stated in $(1)$. Now, considering $|y|<1$, taking limits above we find that
$$sum_{k=1}^infty k^2 y^k=frac{y}{1-y}+frac{3y^2}{(1-y)^2}+frac{2y^3}{(1-y)^3}=-yfrac{1+y}{(1-y)^3}$$
Then you can substitute back $y=x^2$ to find the final expression.
add a comment |
Hint:
$$sum t^k=f(t),$$
$$sum kt^{k-1}=f'(t),$$
$$sum kt^k=tf'(t),$$
$$sum k^2t^{k-1}=(tf'(t)),$$
$$sum k^2t^k=t(tf'(t))',$$
$$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$
(Caution, the derivative is taken on $t$, not on $x$.)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042344%2fevaluating-sum-infty-k-1-frack22k-12k2k12k2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
Good so far, to finish the proof notice that,
$$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$
Differentiating,
$$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$
Multiply by $z$ then differentiate again,
$$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$
So we have that,
$$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$
Put in $z = x^2$ to obtain,
$$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$
The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.
add a comment |
Good so far, to finish the proof notice that,
$$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$
Differentiating,
$$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$
Multiply by $z$ then differentiate again,
$$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$
So we have that,
$$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$
Put in $z = x^2$ to obtain,
$$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$
The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.
add a comment |
Good so far, to finish the proof notice that,
$$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$
Differentiating,
$$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$
Multiply by $z$ then differentiate again,
$$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$
So we have that,
$$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$
Put in $z = x^2$ to obtain,
$$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$
The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.
Good so far, to finish the proof notice that,
$$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$
Differentiating,
$$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$
Multiply by $z$ then differentiate again,
$$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$
So we have that,
$$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$
Put in $z = x^2$ to obtain,
$$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$
The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.
answered Dec 16 at 7:58
symchdmath
2335
2335
add a comment |
add a comment |
I'm doing the final integration using symchdmath's result!
$$frac1{3!}int_0^1frac{x^{-2}(1-x)^3x^2(1+x^2)}{(1-x^2)^3}dx=frac1{3!}int_0^1frac{(1+x^2)}{(1+x)^3}dx=frac1{3!}int_0^1frac{(1+x)^2-2(x+1)+2}{(1+x)^3}dx$$
which when separated into individual terms becomes
$$frac1{3!}Bigg[int_0^1frac1{1+x}dx-2int_0^1frac1{(1+x)^2}dx+2int_0^1frac1{(1+x)^3}dxBigg]=frac1{3!}bigg(ln2-1+frac34bigg)=frac{4ln2-1}{24}$$
add a comment |
I'm doing the final integration using symchdmath's result!
$$frac1{3!}int_0^1frac{x^{-2}(1-x)^3x^2(1+x^2)}{(1-x^2)^3}dx=frac1{3!}int_0^1frac{(1+x^2)}{(1+x)^3}dx=frac1{3!}int_0^1frac{(1+x)^2-2(x+1)+2}{(1+x)^3}dx$$
which when separated into individual terms becomes
$$frac1{3!}Bigg[int_0^1frac1{1+x}dx-2int_0^1frac1{(1+x)^2}dx+2int_0^1frac1{(1+x)^3}dxBigg]=frac1{3!}bigg(ln2-1+frac34bigg)=frac{4ln2-1}{24}$$
add a comment |
I'm doing the final integration using symchdmath's result!
$$frac1{3!}int_0^1frac{x^{-2}(1-x)^3x^2(1+x^2)}{(1-x^2)^3}dx=frac1{3!}int_0^1frac{(1+x^2)}{(1+x)^3}dx=frac1{3!}int_0^1frac{(1+x)^2-2(x+1)+2}{(1+x)^3}dx$$
which when separated into individual terms becomes
$$frac1{3!}Bigg[int_0^1frac1{1+x}dx-2int_0^1frac1{(1+x)^2}dx+2int_0^1frac1{(1+x)^3}dxBigg]=frac1{3!}bigg(ln2-1+frac34bigg)=frac{4ln2-1}{24}$$
I'm doing the final integration using symchdmath's result!
$$frac1{3!}int_0^1frac{x^{-2}(1-x)^3x^2(1+x^2)}{(1-x^2)^3}dx=frac1{3!}int_0^1frac{(1+x^2)}{(1+x)^3}dx=frac1{3!}int_0^1frac{(1+x)^2-2(x+1)+2}{(1+x)^3}dx$$
which when separated into individual terms becomes
$$frac1{3!}Bigg[int_0^1frac1{1+x}dx-2int_0^1frac1{(1+x)^2}dx+2int_0^1frac1{(1+x)^3}dxBigg]=frac1{3!}bigg(ln2-1+frac34bigg)=frac{4ln2-1}{24}$$
answered Dec 16 at 11:59
Sameer Baheti
5568
5568
add a comment |
add a comment |
Too long for a comment.
In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
$$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
$$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
n^2}+Oleft(frac{1}{n^3}right)$$ For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.
add a comment |
Too long for a comment.
In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
$$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
$$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
n^2}+Oleft(frac{1}{n^3}right)$$ For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.
add a comment |
Too long for a comment.
In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
$$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
$$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
n^2}+Oleft(frac{1}{n^3}right)$$ For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.
Too long for a comment.
In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
$$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
$$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
n^2}+Oleft(frac{1}{n^3}right)$$ For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.
answered Dec 16 at 8:34
Claude Leibovici
119k1157132
119k1157132
add a comment |
add a comment |
Applying partial fractions along with the digamma function, we get that:
begin{align*}
sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
&= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
&=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
&= frac{1}{24} left ( log 16 -1 right ) \
& =frac{4 log 2 -1}{24}
end{align*}
This does not address the question, does it ? (I admit that the OP was unclear.)
– Yves Daoust
Dec 16 at 8:41
Well it does answer how to evaluate the series , but not how to continue with the OP's approach.
– Tolaso
Dec 16 at 11:28
add a comment |
Applying partial fractions along with the digamma function, we get that:
begin{align*}
sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
&= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
&=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
&= frac{1}{24} left ( log 16 -1 right ) \
& =frac{4 log 2 -1}{24}
end{align*}
This does not address the question, does it ? (I admit that the OP was unclear.)
– Yves Daoust
Dec 16 at 8:41
Well it does answer how to evaluate the series , but not how to continue with the OP's approach.
– Tolaso
Dec 16 at 11:28
add a comment |
Applying partial fractions along with the digamma function, we get that:
begin{align*}
sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
&= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
&=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
&= frac{1}{24} left ( log 16 -1 right ) \
& =frac{4 log 2 -1}{24}
end{align*}
Applying partial fractions along with the digamma function, we get that:
begin{align*}
sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
&= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
&= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
&=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
&= frac{1}{24} left ( log 16 -1 right ) \
& =frac{4 log 2 -1}{24}
end{align*}
answered Dec 16 at 8:04
Tolaso
3,3751231
3,3751231
This does not address the question, does it ? (I admit that the OP was unclear.)
– Yves Daoust
Dec 16 at 8:41
Well it does answer how to evaluate the series , but not how to continue with the OP's approach.
– Tolaso
Dec 16 at 11:28
add a comment |
This does not address the question, does it ? (I admit that the OP was unclear.)
– Yves Daoust
Dec 16 at 8:41
Well it does answer how to evaluate the series , but not how to continue with the OP's approach.
– Tolaso
Dec 16 at 11:28
This does not address the question, does it ? (I admit that the OP was unclear.)
– Yves Daoust
Dec 16 at 8:41
This does not address the question, does it ? (I admit that the OP was unclear.)
– Yves Daoust
Dec 16 at 8:41
Well it does answer how to evaluate the series , but not how to continue with the OP's approach.
– Tolaso
Dec 16 at 11:28
Well it does answer how to evaluate the series , but not how to continue with the OP's approach.
– Tolaso
Dec 16 at 11:28
add a comment |
An alternative way to evaluate the sum $sum_{k=1}^infty k^2 x^{2k}$ it is using finite calculus. Consider the indefinite sum $sum (k^underline 2+k) y^k,delta k$, then taking limits in this indefinite sum and substituting $y=x^2$ we recover your series, because $k^2=k^underline 2+k$, where $k^underline 2=k(k-1)$ is a falling factorial of order $2$.
In general it is easy to check that
$$sum k^underline m,delta k=frac{k^underline{m+1}}{m+1}+B,quadDelta_k k^underline m=mk^underline{m-1}\ sum c^k,delta k=frac{c^k}{c-1}+B,quad Delta_k c^k=(c-1) c^ktag1$$
where $B$ represent and arbitrary periodic function of period one and $c$ some arbitrary constant. Also we have the tool of summation by parts, that can be written as
$$sum f(k)Delta_k g(k), delta k=f(k)g(k)-sum g(k+1)Delta_k f(k),delta ktag2$$
Thus, coming back to our sum, we have that
$$sum (k^underline 2+k)y^k,delta k=frac1{y-1}y^k(k^underline 2+k)-frac1{y-1}sum y^{k+1}(2k+1),delta k\
=frac1{y-1}left(y^k(k^underline 2+k)-left(frac{y^{k+1}(2k+1)}{y-1}-frac1{y-1}sum y^{k+2}2,delta kright)right)\
=frac{y^k(k^underline 2+k)}{y-1}-frac{y^{k+1}(2k+1)}{(y-1)^2}+frac{y^{k+2}2}{(y-1)^3}$$
where we applied twice summation by parts and the identities stated in $(1)$. Now, considering $|y|<1$, taking limits above we find that
$$sum_{k=1}^infty k^2 y^k=frac{y}{1-y}+frac{3y^2}{(1-y)^2}+frac{2y^3}{(1-y)^3}=-yfrac{1+y}{(1-y)^3}$$
Then you can substitute back $y=x^2$ to find the final expression.
add a comment |
An alternative way to evaluate the sum $sum_{k=1}^infty k^2 x^{2k}$ it is using finite calculus. Consider the indefinite sum $sum (k^underline 2+k) y^k,delta k$, then taking limits in this indefinite sum and substituting $y=x^2$ we recover your series, because $k^2=k^underline 2+k$, where $k^underline 2=k(k-1)$ is a falling factorial of order $2$.
In general it is easy to check that
$$sum k^underline m,delta k=frac{k^underline{m+1}}{m+1}+B,quadDelta_k k^underline m=mk^underline{m-1}\ sum c^k,delta k=frac{c^k}{c-1}+B,quad Delta_k c^k=(c-1) c^ktag1$$
where $B$ represent and arbitrary periodic function of period one and $c$ some arbitrary constant. Also we have the tool of summation by parts, that can be written as
$$sum f(k)Delta_k g(k), delta k=f(k)g(k)-sum g(k+1)Delta_k f(k),delta ktag2$$
Thus, coming back to our sum, we have that
$$sum (k^underline 2+k)y^k,delta k=frac1{y-1}y^k(k^underline 2+k)-frac1{y-1}sum y^{k+1}(2k+1),delta k\
=frac1{y-1}left(y^k(k^underline 2+k)-left(frac{y^{k+1}(2k+1)}{y-1}-frac1{y-1}sum y^{k+2}2,delta kright)right)\
=frac{y^k(k^underline 2+k)}{y-1}-frac{y^{k+1}(2k+1)}{(y-1)^2}+frac{y^{k+2}2}{(y-1)^3}$$
where we applied twice summation by parts and the identities stated in $(1)$. Now, considering $|y|<1$, taking limits above we find that
$$sum_{k=1}^infty k^2 y^k=frac{y}{1-y}+frac{3y^2}{(1-y)^2}+frac{2y^3}{(1-y)^3}=-yfrac{1+y}{(1-y)^3}$$
Then you can substitute back $y=x^2$ to find the final expression.
add a comment |
An alternative way to evaluate the sum $sum_{k=1}^infty k^2 x^{2k}$ it is using finite calculus. Consider the indefinite sum $sum (k^underline 2+k) y^k,delta k$, then taking limits in this indefinite sum and substituting $y=x^2$ we recover your series, because $k^2=k^underline 2+k$, where $k^underline 2=k(k-1)$ is a falling factorial of order $2$.
In general it is easy to check that
$$sum k^underline m,delta k=frac{k^underline{m+1}}{m+1}+B,quadDelta_k k^underline m=mk^underline{m-1}\ sum c^k,delta k=frac{c^k}{c-1}+B,quad Delta_k c^k=(c-1) c^ktag1$$
where $B$ represent and arbitrary periodic function of period one and $c$ some arbitrary constant. Also we have the tool of summation by parts, that can be written as
$$sum f(k)Delta_k g(k), delta k=f(k)g(k)-sum g(k+1)Delta_k f(k),delta ktag2$$
Thus, coming back to our sum, we have that
$$sum (k^underline 2+k)y^k,delta k=frac1{y-1}y^k(k^underline 2+k)-frac1{y-1}sum y^{k+1}(2k+1),delta k\
=frac1{y-1}left(y^k(k^underline 2+k)-left(frac{y^{k+1}(2k+1)}{y-1}-frac1{y-1}sum y^{k+2}2,delta kright)right)\
=frac{y^k(k^underline 2+k)}{y-1}-frac{y^{k+1}(2k+1)}{(y-1)^2}+frac{y^{k+2}2}{(y-1)^3}$$
where we applied twice summation by parts and the identities stated in $(1)$. Now, considering $|y|<1$, taking limits above we find that
$$sum_{k=1}^infty k^2 y^k=frac{y}{1-y}+frac{3y^2}{(1-y)^2}+frac{2y^3}{(1-y)^3}=-yfrac{1+y}{(1-y)^3}$$
Then you can substitute back $y=x^2$ to find the final expression.
An alternative way to evaluate the sum $sum_{k=1}^infty k^2 x^{2k}$ it is using finite calculus. Consider the indefinite sum $sum (k^underline 2+k) y^k,delta k$, then taking limits in this indefinite sum and substituting $y=x^2$ we recover your series, because $k^2=k^underline 2+k$, where $k^underline 2=k(k-1)$ is a falling factorial of order $2$.
In general it is easy to check that
$$sum k^underline m,delta k=frac{k^underline{m+1}}{m+1}+B,quadDelta_k k^underline m=mk^underline{m-1}\ sum c^k,delta k=frac{c^k}{c-1}+B,quad Delta_k c^k=(c-1) c^ktag1$$
where $B$ represent and arbitrary periodic function of period one and $c$ some arbitrary constant. Also we have the tool of summation by parts, that can be written as
$$sum f(k)Delta_k g(k), delta k=f(k)g(k)-sum g(k+1)Delta_k f(k),delta ktag2$$
Thus, coming back to our sum, we have that
$$sum (k^underline 2+k)y^k,delta k=frac1{y-1}y^k(k^underline 2+k)-frac1{y-1}sum y^{k+1}(2k+1),delta k\
=frac1{y-1}left(y^k(k^underline 2+k)-left(frac{y^{k+1}(2k+1)}{y-1}-frac1{y-1}sum y^{k+2}2,delta kright)right)\
=frac{y^k(k^underline 2+k)}{y-1}-frac{y^{k+1}(2k+1)}{(y-1)^2}+frac{y^{k+2}2}{(y-1)^3}$$
where we applied twice summation by parts and the identities stated in $(1)$. Now, considering $|y|<1$, taking limits above we find that
$$sum_{k=1}^infty k^2 y^k=frac{y}{1-y}+frac{3y^2}{(1-y)^2}+frac{2y^3}{(1-y)^3}=-yfrac{1+y}{(1-y)^3}$$
Then you can substitute back $y=x^2$ to find the final expression.
answered Dec 16 at 10:26
Masacroso
12.9k41746
12.9k41746
add a comment |
add a comment |
Hint:
$$sum t^k=f(t),$$
$$sum kt^{k-1}=f'(t),$$
$$sum kt^k=tf'(t),$$
$$sum k^2t^{k-1}=(tf'(t)),$$
$$sum k^2t^k=t(tf'(t))',$$
$$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$
(Caution, the derivative is taken on $t$, not on $x$.)
add a comment |
Hint:
$$sum t^k=f(t),$$
$$sum kt^{k-1}=f'(t),$$
$$sum kt^k=tf'(t),$$
$$sum k^2t^{k-1}=(tf'(t)),$$
$$sum k^2t^k=t(tf'(t))',$$
$$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$
(Caution, the derivative is taken on $t$, not on $x$.)
add a comment |
Hint:
$$sum t^k=f(t),$$
$$sum kt^{k-1}=f'(t),$$
$$sum kt^k=tf'(t),$$
$$sum k^2t^{k-1}=(tf'(t)),$$
$$sum k^2t^k=t(tf'(t))',$$
$$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$
(Caution, the derivative is taken on $t$, not on $x$.)
Hint:
$$sum t^k=f(t),$$
$$sum kt^{k-1}=f'(t),$$
$$sum kt^k=tf'(t),$$
$$sum k^2t^{k-1}=(tf'(t)),$$
$$sum k^2t^k=t(tf'(t))',$$
$$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$
(Caution, the derivative is taken on $t$, not on $x$.)
edited Dec 16 at 10:28
answered Dec 16 at 8:45
Yves Daoust
124k671221
124k671221
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042344%2fevaluating-sum-infty-k-1-frack22k-12k2k12k2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Easier: Use partial fractions on the summand first, then sum.
– user10354138
Dec 16 at 7:55
1
There's an error in your third line, it should be $S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=1/3! sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$. Then you are looking for $S=1/3! sum^{infty}_{k=0}(k+1)^2int^{1}_{0}x^{2k}(1-x)^3dx = 1/3! int^{1}_{0}left[sum^{infty}_{k=1}k^2x^{2k}right] x^{-2}(1-x)^3dx$. You can then reuse the result of @symchdmath, and you're left with $1/6 int_0^1 frac{1+x^2}{(1+x)^3} dx$, which you can solve with partial fraction expansion.
– yoann
Dec 16 at 10:09
This series is already here: How to sum $frac1{1cdot 2cdot 3cdot 4} + frac4{3cdot 4cdot 5cdot 6} + frac9{5cdot 6cdot 7cdot 8} + cdots$ quickly?
– Sil
Dec 16 at 15:19