Evaluating $sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$












4















Finding sum of series $$displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$




Try: Let $$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$



So, $$S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=frac1{3!}sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$$



with the help of identity $$B(m,n) = int^{1}_{0}x^m(1-x)^ndx = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}$$



$$B(m,n) = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}=frac{m!cdot n!}{(m+n+1)!}$$



So $$S=sum^{infty}_{k=0}(k+1)^2int^{1}_{0}(x)^{2k}(1-x)^3dx$$



$$S=int^{1}_{0}x^{-2}(1-x)^3sum^{infty}_{k=1}(kx^k)^2dx$$



Can someone explain me how to calculate $displaystyle sum^{infty}_{k=1}k^2x^{2k}$ in some short way . although I am trying to solve it but it is too lengthy.



Please explain to me ,thanks.










share|cite|improve this question
























  • Easier: Use partial fractions on the summand first, then sum.
    – user10354138
    Dec 16 at 7:55








  • 1




    There's an error in your third line, it should be $S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=1/3! sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$. Then you are looking for $S=1/3! sum^{infty}_{k=0}(k+1)^2int^{1}_{0}x^{2k}(1-x)^3dx = 1/3! int^{1}_{0}left[sum^{infty}_{k=1}k^2x^{2k}right] x^{-2}(1-x)^3dx$. You can then reuse the result of @symchdmath, and you're left with $1/6 int_0^1 frac{1+x^2}{(1+x)^3} dx$, which you can solve with partial fraction expansion.
    – yoann
    Dec 16 at 10:09












  • This series is already here: How to sum $frac1{1cdot 2cdot 3cdot 4} + frac4{3cdot 4cdot 5cdot 6} + frac9{5cdot 6cdot 7cdot 8} + cdots$ quickly?
    – Sil
    Dec 16 at 15:19
















4















Finding sum of series $$displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$




Try: Let $$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$



So, $$S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=frac1{3!}sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$$



with the help of identity $$B(m,n) = int^{1}_{0}x^m(1-x)^ndx = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}$$



$$B(m,n) = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}=frac{m!cdot n!}{(m+n+1)!}$$



So $$S=sum^{infty}_{k=0}(k+1)^2int^{1}_{0}(x)^{2k}(1-x)^3dx$$



$$S=int^{1}_{0}x^{-2}(1-x)^3sum^{infty}_{k=1}(kx^k)^2dx$$



Can someone explain me how to calculate $displaystyle sum^{infty}_{k=1}k^2x^{2k}$ in some short way . although I am trying to solve it but it is too lengthy.



Please explain to me ,thanks.










share|cite|improve this question
























  • Easier: Use partial fractions on the summand first, then sum.
    – user10354138
    Dec 16 at 7:55








  • 1




    There's an error in your third line, it should be $S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=1/3! sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$. Then you are looking for $S=1/3! sum^{infty}_{k=0}(k+1)^2int^{1}_{0}x^{2k}(1-x)^3dx = 1/3! int^{1}_{0}left[sum^{infty}_{k=1}k^2x^{2k}right] x^{-2}(1-x)^3dx$. You can then reuse the result of @symchdmath, and you're left with $1/6 int_0^1 frac{1+x^2}{(1+x)^3} dx$, which you can solve with partial fraction expansion.
    – yoann
    Dec 16 at 10:09












  • This series is already here: How to sum $frac1{1cdot 2cdot 3cdot 4} + frac4{3cdot 4cdot 5cdot 6} + frac9{5cdot 6cdot 7cdot 8} + cdots$ quickly?
    – Sil
    Dec 16 at 15:19














4












4








4


2






Finding sum of series $$displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$




Try: Let $$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$



So, $$S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=frac1{3!}sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$$



with the help of identity $$B(m,n) = int^{1}_{0}x^m(1-x)^ndx = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}$$



$$B(m,n) = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}=frac{m!cdot n!}{(m+n+1)!}$$



So $$S=sum^{infty}_{k=0}(k+1)^2int^{1}_{0}(x)^{2k}(1-x)^3dx$$



$$S=int^{1}_{0}x^{-2}(1-x)^3sum^{infty}_{k=1}(kx^k)^2dx$$



Can someone explain me how to calculate $displaystyle sum^{infty}_{k=1}k^2x^{2k}$ in some short way . although I am trying to solve it but it is too lengthy.



Please explain to me ,thanks.










share|cite|improve this question
















Finding sum of series $$displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$




Try: Let $$S = displaystyle sum^{infty}_{k=1}frac{k^2}{(2k-1)(2k)(2k+1)(2k+2)}$$



So, $$S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=frac1{3!}sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$$



with the help of identity $$B(m,n) = int^{1}_{0}x^m(1-x)^ndx = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}$$



$$B(m,n) = frac{Gamma (m+1)Gamma(n+1)}{Gamma(m+n+2)}=frac{m!cdot n!}{(m+n+1)!}$$



So $$S=sum^{infty}_{k=0}(k+1)^2int^{1}_{0}(x)^{2k}(1-x)^3dx$$



$$S=int^{1}_{0}x^{-2}(1-x)^3sum^{infty}_{k=1}(kx^k)^2dx$$



Can someone explain me how to calculate $displaystyle sum^{infty}_{k=1}k^2x^{2k}$ in some short way . although I am trying to solve it but it is too lengthy.



Please explain to me ,thanks.







sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 16 at 15:08









StubbornAtom

5,26711138




5,26711138










asked Dec 16 at 7:47









D Tiwari

5,3002630




5,3002630












  • Easier: Use partial fractions on the summand first, then sum.
    – user10354138
    Dec 16 at 7:55








  • 1




    There's an error in your third line, it should be $S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=1/3! sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$. Then you are looking for $S=1/3! sum^{infty}_{k=0}(k+1)^2int^{1}_{0}x^{2k}(1-x)^3dx = 1/3! int^{1}_{0}left[sum^{infty}_{k=1}k^2x^{2k}right] x^{-2}(1-x)^3dx$. You can then reuse the result of @symchdmath, and you're left with $1/6 int_0^1 frac{1+x^2}{(1+x)^3} dx$, which you can solve with partial fraction expansion.
    – yoann
    Dec 16 at 10:09












  • This series is already here: How to sum $frac1{1cdot 2cdot 3cdot 4} + frac4{3cdot 4cdot 5cdot 6} + frac9{5cdot 6cdot 7cdot 8} + cdots$ quickly?
    – Sil
    Dec 16 at 15:19


















  • Easier: Use partial fractions on the summand first, then sum.
    – user10354138
    Dec 16 at 7:55








  • 1




    There's an error in your third line, it should be $S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=1/3! sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$. Then you are looking for $S=1/3! sum^{infty}_{k=0}(k+1)^2int^{1}_{0}x^{2k}(1-x)^3dx = 1/3! int^{1}_{0}left[sum^{infty}_{k=1}k^2x^{2k}right] x^{-2}(1-x)^3dx$. You can then reuse the result of @symchdmath, and you're left with $1/6 int_0^1 frac{1+x^2}{(1+x)^3} dx$, which you can solve with partial fraction expansion.
    – yoann
    Dec 16 at 10:09












  • This series is already here: How to sum $frac1{1cdot 2cdot 3cdot 4} + frac4{3cdot 4cdot 5cdot 6} + frac9{5cdot 6cdot 7cdot 8} + cdots$ quickly?
    – Sil
    Dec 16 at 15:19
















Easier: Use partial fractions on the summand first, then sum.
– user10354138
Dec 16 at 7:55






Easier: Use partial fractions on the summand first, then sum.
– user10354138
Dec 16 at 7:55






1




1




There's an error in your third line, it should be $S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=1/3! sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$. Then you are looking for $S=1/3! sum^{infty}_{k=0}(k+1)^2int^{1}_{0}x^{2k}(1-x)^3dx = 1/3! int^{1}_{0}left[sum^{infty}_{k=1}k^2x^{2k}right] x^{-2}(1-x)^3dx$. You can then reuse the result of @symchdmath, and you're left with $1/6 int_0^1 frac{1+x^2}{(1+x)^3} dx$, which you can solve with partial fraction expansion.
– yoann
Dec 16 at 10:09






There's an error in your third line, it should be $S =sum^{infty}_{k=1}frac{k^2cdot (2k-2)!}{(2k+2)!}=1/3! sum^{infty}_{k=0}frac{(k+1)^2cdot(2k)!cdot 3!}{(2k+3+1)!}$. Then you are looking for $S=1/3! sum^{infty}_{k=0}(k+1)^2int^{1}_{0}x^{2k}(1-x)^3dx = 1/3! int^{1}_{0}left[sum^{infty}_{k=1}k^2x^{2k}right] x^{-2}(1-x)^3dx$. You can then reuse the result of @symchdmath, and you're left with $1/6 int_0^1 frac{1+x^2}{(1+x)^3} dx$, which you can solve with partial fraction expansion.
– yoann
Dec 16 at 10:09














This series is already here: How to sum $frac1{1cdot 2cdot 3cdot 4} + frac4{3cdot 4cdot 5cdot 6} + frac9{5cdot 6cdot 7cdot 8} + cdots$ quickly?
– Sil
Dec 16 at 15:19




This series is already here: How to sum $frac1{1cdot 2cdot 3cdot 4} + frac4{3cdot 4cdot 5cdot 6} + frac9{5cdot 6cdot 7cdot 8} + cdots$ quickly?
– Sil
Dec 16 at 15:19










6 Answers
6






active

oldest

votes


















7














Good so far, to finish the proof notice that,



$$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$



Differentiating,



$$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$



Multiply by $z$ then differentiate again,



$$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$



So we have that,



$$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$



Put in $z = x^2$ to obtain,



$$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$



The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.






share|cite|improve this answer





























    3














    I'm doing the final integration using symchdmath's result!
    $$frac1{3!}int_0^1frac{x^{-2}(1-x)^3x^2(1+x^2)}{(1-x^2)^3}dx=frac1{3!}int_0^1frac{(1+x^2)}{(1+x)^3}dx=frac1{3!}int_0^1frac{(1+x)^2-2(x+1)+2}{(1+x)^3}dx$$
    which when separated into individual terms becomes
    $$frac1{3!}Bigg[int_0^1frac1{1+x}dx-2int_0^1frac1{(1+x)^2}dx+2int_0^1frac1{(1+x)^3}dxBigg]=frac1{3!}bigg(ln2-1+frac34bigg)=frac{4ln2-1}{24}$$






    share|cite|improve this answer





























      2














      Too long for a comment.



      In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
      $$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
      $$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
      n^2}+Oleft(frac{1}{n^3}right)$$
      For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.






      share|cite|improve this answer





























        1














        Applying partial fractions along with the digamma function, we get that:



        begin{align*}
        sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
        &=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
        &= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
        &= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
        &=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
        &= frac{1}{24} left ( log 16 -1 right ) \
        & =frac{4 log 2 -1}{24}
        end{align*}






        share|cite|improve this answer





















        • This does not address the question, does it ? (I admit that the OP was unclear.)
          – Yves Daoust
          Dec 16 at 8:41












        • Well it does answer how to evaluate the series , but not how to continue with the OP's approach.
          – Tolaso
          Dec 16 at 11:28



















        1














        An alternative way to evaluate the sum $sum_{k=1}^infty k^2 x^{2k}$ it is using finite calculus. Consider the indefinite sum $sum (k^underline 2+k) y^k,delta k$, then taking limits in this indefinite sum and substituting $y=x^2$ we recover your series, because $k^2=k^underline 2+k$, where $k^underline 2=k(k-1)$ is a falling factorial of order $2$.



        In general it is easy to check that



        $$sum k^underline m,delta k=frac{k^underline{m+1}}{m+1}+B,quadDelta_k k^underline m=mk^underline{m-1}\ sum c^k,delta k=frac{c^k}{c-1}+B,quad Delta_k c^k=(c-1) c^ktag1$$



        where $B$ represent and arbitrary periodic function of period one and $c$ some arbitrary constant. Also we have the tool of summation by parts, that can be written as



        $$sum f(k)Delta_k g(k), delta k=f(k)g(k)-sum g(k+1)Delta_k f(k),delta ktag2$$



        Thus, coming back to our sum, we have that



        $$sum (k^underline 2+k)y^k,delta k=frac1{y-1}y^k(k^underline 2+k)-frac1{y-1}sum y^{k+1}(2k+1),delta k\
        =frac1{y-1}left(y^k(k^underline 2+k)-left(frac{y^{k+1}(2k+1)}{y-1}-frac1{y-1}sum y^{k+2}2,delta kright)right)\
        =frac{y^k(k^underline 2+k)}{y-1}-frac{y^{k+1}(2k+1)}{(y-1)^2}+frac{y^{k+2}2}{(y-1)^3}$$



        where we applied twice summation by parts and the identities stated in $(1)$. Now, considering $|y|<1$, taking limits above we find that



        $$sum_{k=1}^infty k^2 y^k=frac{y}{1-y}+frac{3y^2}{(1-y)^2}+frac{2y^3}{(1-y)^3}=-yfrac{1+y}{(1-y)^3}$$



        Then you can substitute back $y=x^2$ to find the final expression.






        share|cite|improve this answer





























          1














          Hint:



          $$sum t^k=f(t),$$



          $$sum kt^{k-1}=f'(t),$$



          $$sum kt^k=tf'(t),$$



          $$sum k^2t^{k-1}=(tf'(t)),$$



          $$sum k^2t^k=t(tf'(t))',$$



          $$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$



          (Caution, the derivative is taken on $t$, not on $x$.)






          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042344%2fevaluating-sum-infty-k-1-frack22k-12k2k12k2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            6 Answers
            6






            active

            oldest

            votes








            6 Answers
            6






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            7














            Good so far, to finish the proof notice that,



            $$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$



            Differentiating,



            $$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$



            Multiply by $z$ then differentiate again,



            $$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$



            So we have that,



            $$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$



            Put in $z = x^2$ to obtain,



            $$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$



            The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.






            share|cite|improve this answer


























              7














              Good so far, to finish the proof notice that,



              $$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$



              Differentiating,



              $$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$



              Multiply by $z$ then differentiate again,



              $$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$



              So we have that,



              $$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$



              Put in $z = x^2$ to obtain,



              $$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$



              The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.






              share|cite|improve this answer
























                7












                7








                7






                Good so far, to finish the proof notice that,



                $$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$



                Differentiating,



                $$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$



                Multiply by $z$ then differentiate again,



                $$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$



                So we have that,



                $$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$



                Put in $z = x^2$ to obtain,



                $$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$



                The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.






                share|cite|improve this answer












                Good so far, to finish the proof notice that,



                $$frac{1}{1-z} = sum_{i=0}^{infty} z^i $$



                Differentiating,



                $$frac{1}{(1-z)^2} = sum_{i=1}^{infty} i z^{i-1}$$



                Multiply by $z$ then differentiate again,



                $$zfrac{d}{dz} frac{z}{(1-z)^2} = sum_{i=1}^infty i^2 z^{i} $$



                So we have that,



                $$frac{z(z+1)}{(1-z)^3} = sum_{k=1}^infty k^2 z^k $$



                Put in $z = x^2$ to obtain,



                $$sum_{k=1}^infty k^2x^{2k} = frac{x^2(x^2+1)}{(1-x^2)^3}$$



                The most brute force way to calculate the integral after that is to substitute in $x = sin theta$, expand everything and separate and calculate all the integrals separately.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 16 at 7:58









                symchdmath

                2335




                2335























                    3














                    I'm doing the final integration using symchdmath's result!
                    $$frac1{3!}int_0^1frac{x^{-2}(1-x)^3x^2(1+x^2)}{(1-x^2)^3}dx=frac1{3!}int_0^1frac{(1+x^2)}{(1+x)^3}dx=frac1{3!}int_0^1frac{(1+x)^2-2(x+1)+2}{(1+x)^3}dx$$
                    which when separated into individual terms becomes
                    $$frac1{3!}Bigg[int_0^1frac1{1+x}dx-2int_0^1frac1{(1+x)^2}dx+2int_0^1frac1{(1+x)^3}dxBigg]=frac1{3!}bigg(ln2-1+frac34bigg)=frac{4ln2-1}{24}$$






                    share|cite|improve this answer


























                      3














                      I'm doing the final integration using symchdmath's result!
                      $$frac1{3!}int_0^1frac{x^{-2}(1-x)^3x^2(1+x^2)}{(1-x^2)^3}dx=frac1{3!}int_0^1frac{(1+x^2)}{(1+x)^3}dx=frac1{3!}int_0^1frac{(1+x)^2-2(x+1)+2}{(1+x)^3}dx$$
                      which when separated into individual terms becomes
                      $$frac1{3!}Bigg[int_0^1frac1{1+x}dx-2int_0^1frac1{(1+x)^2}dx+2int_0^1frac1{(1+x)^3}dxBigg]=frac1{3!}bigg(ln2-1+frac34bigg)=frac{4ln2-1}{24}$$






                      share|cite|improve this answer
























                        3












                        3








                        3






                        I'm doing the final integration using symchdmath's result!
                        $$frac1{3!}int_0^1frac{x^{-2}(1-x)^3x^2(1+x^2)}{(1-x^2)^3}dx=frac1{3!}int_0^1frac{(1+x^2)}{(1+x)^3}dx=frac1{3!}int_0^1frac{(1+x)^2-2(x+1)+2}{(1+x)^3}dx$$
                        which when separated into individual terms becomes
                        $$frac1{3!}Bigg[int_0^1frac1{1+x}dx-2int_0^1frac1{(1+x)^2}dx+2int_0^1frac1{(1+x)^3}dxBigg]=frac1{3!}bigg(ln2-1+frac34bigg)=frac{4ln2-1}{24}$$






                        share|cite|improve this answer












                        I'm doing the final integration using symchdmath's result!
                        $$frac1{3!}int_0^1frac{x^{-2}(1-x)^3x^2(1+x^2)}{(1-x^2)^3}dx=frac1{3!}int_0^1frac{(1+x^2)}{(1+x)^3}dx=frac1{3!}int_0^1frac{(1+x)^2-2(x+1)+2}{(1+x)^3}dx$$
                        which when separated into individual terms becomes
                        $$frac1{3!}Bigg[int_0^1frac1{1+x}dx-2int_0^1frac1{(1+x)^2}dx+2int_0^1frac1{(1+x)^3}dxBigg]=frac1{3!}bigg(ln2-1+frac34bigg)=frac{4ln2-1}{24}$$







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered Dec 16 at 11:59









                        Sameer Baheti

                        5568




                        5568























                            2














                            Too long for a comment.



                            In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
                            $$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
                            $$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
                            n^2}+Oleft(frac{1}{n^3}right)$$
                            For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.






                            share|cite|improve this answer


























                              2














                              Too long for a comment.



                              In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
                              $$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
                              $$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
                              n^2}+Oleft(frac{1}{n^3}right)$$
                              For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.






                              share|cite|improve this answer
























                                2












                                2








                                2






                                Too long for a comment.



                                In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
                                $$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
                                $$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
                                n^2}+Oleft(frac{1}{n^3}right)$$
                                For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.






                                share|cite|improve this answer












                                Too long for a comment.



                                In the same spirit as @Tolaso's answer, using harmonic numbers in place of the digamma functions (just to have another set of notations), we can have a quite good approximation of the partial sums.
                                $$S_n= sum_{k=0}^{n} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )=frac{1}{12} left(H_{n-frac{1}{2}}-H_{n+1}+frac{n-1}{2 n+1}+2log (2)right) $$ Using the asymptotics of the harmonic and Taylor series for the fraction, we should get
                                $$S_n=frac{4 log (2) -1}{24}-frac{1}{16 n}+frac{1}{16
                                n^2}+Oleft(frac{1}{n^3}right)$$
                                For $n=10$, the exact value is $S_{10}=frac{95219407}{1396755360}approx 0.06817$ while the above expansion would give $frac{log (2)}{6}-frac{227}{4800}approx 0.06823$.







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Dec 16 at 8:34









                                Claude Leibovici

                                119k1157132




                                119k1157132























                                    1














                                    Applying partial fractions along with the digamma function, we get that:



                                    begin{align*}
                                    sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
                                    &=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
                                    &= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
                                    &= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
                                    &=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
                                    &= frac{1}{24} left ( log 16 -1 right ) \
                                    & =frac{4 log 2 -1}{24}
                                    end{align*}






                                    share|cite|improve this answer





















                                    • This does not address the question, does it ? (I admit that the OP was unclear.)
                                      – Yves Daoust
                                      Dec 16 at 8:41












                                    • Well it does answer how to evaluate the series , but not how to continue with the OP's approach.
                                      – Tolaso
                                      Dec 16 at 11:28
















                                    1














                                    Applying partial fractions along with the digamma function, we get that:



                                    begin{align*}
                                    sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
                                    &=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
                                    &= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
                                    &= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
                                    &=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
                                    &= frac{1}{24} left ( log 16 -1 right ) \
                                    & =frac{4 log 2 -1}{24}
                                    end{align*}






                                    share|cite|improve this answer





















                                    • This does not address the question, does it ? (I admit that the OP was unclear.)
                                      – Yves Daoust
                                      Dec 16 at 8:41












                                    • Well it does answer how to evaluate the series , but not how to continue with the OP's approach.
                                      – Tolaso
                                      Dec 16 at 11:28














                                    1












                                    1








                                    1






                                    Applying partial fractions along with the digamma function, we get that:



                                    begin{align*}
                                    sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
                                    &=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
                                    &= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
                                    &= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
                                    &=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
                                    &= frac{1}{24} left ( log 16 -1 right ) \
                                    & =frac{4 log 2 -1}{24}
                                    end{align*}






                                    share|cite|improve this answer












                                    Applying partial fractions along with the digamma function, we get that:



                                    begin{align*}
                                    sum_{k=1}^{infty} frac{k}{2left ( 2k-1 right )left ( 2k+1 right )left ( 2k+2 right )} &= sum_{k=1}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
                                    &=sum_{k=0}^{infty} left ( frac{1}{24left ( 2k-1 right )}+ frac{1}{8left ( 2k+1 right )} -frac{1}{12left ( k+1 right )} right ) \
                                    &= sum_{k=0}^{infty} left ( frac{1}{24cdot 2left ( k-frac{1}{2} right )}+ frac{1}{8 cdot 2 left ( k + frac{1}{2} right )} - frac{1}{12left ( k+1 right )} right )\
                                    &= -frac{1}{48} psi^{(0)} left ( -frac{1}{2} right ) - frac{1}{16} psi^{(0)} left ( frac{1}{2} right ) + frac{1}{12} psi^{(0)} (1) \
                                    &=-frac{1}{48} left ( 2-gamma -2log 2 right ) - frac{1}{16} left ( -gamma -2 log 2 right ) - frac{gamma}{12} \
                                    &= frac{1}{24} left ( log 16 -1 right ) \
                                    & =frac{4 log 2 -1}{24}
                                    end{align*}







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Dec 16 at 8:04









                                    Tolaso

                                    3,3751231




                                    3,3751231












                                    • This does not address the question, does it ? (I admit that the OP was unclear.)
                                      – Yves Daoust
                                      Dec 16 at 8:41












                                    • Well it does answer how to evaluate the series , but not how to continue with the OP's approach.
                                      – Tolaso
                                      Dec 16 at 11:28


















                                    • This does not address the question, does it ? (I admit that the OP was unclear.)
                                      – Yves Daoust
                                      Dec 16 at 8:41












                                    • Well it does answer how to evaluate the series , but not how to continue with the OP's approach.
                                      – Tolaso
                                      Dec 16 at 11:28
















                                    This does not address the question, does it ? (I admit that the OP was unclear.)
                                    – Yves Daoust
                                    Dec 16 at 8:41






                                    This does not address the question, does it ? (I admit that the OP was unclear.)
                                    – Yves Daoust
                                    Dec 16 at 8:41














                                    Well it does answer how to evaluate the series , but not how to continue with the OP's approach.
                                    – Tolaso
                                    Dec 16 at 11:28




                                    Well it does answer how to evaluate the series , but not how to continue with the OP's approach.
                                    – Tolaso
                                    Dec 16 at 11:28











                                    1














                                    An alternative way to evaluate the sum $sum_{k=1}^infty k^2 x^{2k}$ it is using finite calculus. Consider the indefinite sum $sum (k^underline 2+k) y^k,delta k$, then taking limits in this indefinite sum and substituting $y=x^2$ we recover your series, because $k^2=k^underline 2+k$, where $k^underline 2=k(k-1)$ is a falling factorial of order $2$.



                                    In general it is easy to check that



                                    $$sum k^underline m,delta k=frac{k^underline{m+1}}{m+1}+B,quadDelta_k k^underline m=mk^underline{m-1}\ sum c^k,delta k=frac{c^k}{c-1}+B,quad Delta_k c^k=(c-1) c^ktag1$$



                                    where $B$ represent and arbitrary periodic function of period one and $c$ some arbitrary constant. Also we have the tool of summation by parts, that can be written as



                                    $$sum f(k)Delta_k g(k), delta k=f(k)g(k)-sum g(k+1)Delta_k f(k),delta ktag2$$



                                    Thus, coming back to our sum, we have that



                                    $$sum (k^underline 2+k)y^k,delta k=frac1{y-1}y^k(k^underline 2+k)-frac1{y-1}sum y^{k+1}(2k+1),delta k\
                                    =frac1{y-1}left(y^k(k^underline 2+k)-left(frac{y^{k+1}(2k+1)}{y-1}-frac1{y-1}sum y^{k+2}2,delta kright)right)\
                                    =frac{y^k(k^underline 2+k)}{y-1}-frac{y^{k+1}(2k+1)}{(y-1)^2}+frac{y^{k+2}2}{(y-1)^3}$$



                                    where we applied twice summation by parts and the identities stated in $(1)$. Now, considering $|y|<1$, taking limits above we find that



                                    $$sum_{k=1}^infty k^2 y^k=frac{y}{1-y}+frac{3y^2}{(1-y)^2}+frac{2y^3}{(1-y)^3}=-yfrac{1+y}{(1-y)^3}$$



                                    Then you can substitute back $y=x^2$ to find the final expression.






                                    share|cite|improve this answer


























                                      1














                                      An alternative way to evaluate the sum $sum_{k=1}^infty k^2 x^{2k}$ it is using finite calculus. Consider the indefinite sum $sum (k^underline 2+k) y^k,delta k$, then taking limits in this indefinite sum and substituting $y=x^2$ we recover your series, because $k^2=k^underline 2+k$, where $k^underline 2=k(k-1)$ is a falling factorial of order $2$.



                                      In general it is easy to check that



                                      $$sum k^underline m,delta k=frac{k^underline{m+1}}{m+1}+B,quadDelta_k k^underline m=mk^underline{m-1}\ sum c^k,delta k=frac{c^k}{c-1}+B,quad Delta_k c^k=(c-1) c^ktag1$$



                                      where $B$ represent and arbitrary periodic function of period one and $c$ some arbitrary constant. Also we have the tool of summation by parts, that can be written as



                                      $$sum f(k)Delta_k g(k), delta k=f(k)g(k)-sum g(k+1)Delta_k f(k),delta ktag2$$



                                      Thus, coming back to our sum, we have that



                                      $$sum (k^underline 2+k)y^k,delta k=frac1{y-1}y^k(k^underline 2+k)-frac1{y-1}sum y^{k+1}(2k+1),delta k\
                                      =frac1{y-1}left(y^k(k^underline 2+k)-left(frac{y^{k+1}(2k+1)}{y-1}-frac1{y-1}sum y^{k+2}2,delta kright)right)\
                                      =frac{y^k(k^underline 2+k)}{y-1}-frac{y^{k+1}(2k+1)}{(y-1)^2}+frac{y^{k+2}2}{(y-1)^3}$$



                                      where we applied twice summation by parts and the identities stated in $(1)$. Now, considering $|y|<1$, taking limits above we find that



                                      $$sum_{k=1}^infty k^2 y^k=frac{y}{1-y}+frac{3y^2}{(1-y)^2}+frac{2y^3}{(1-y)^3}=-yfrac{1+y}{(1-y)^3}$$



                                      Then you can substitute back $y=x^2$ to find the final expression.






                                      share|cite|improve this answer
























                                        1












                                        1








                                        1






                                        An alternative way to evaluate the sum $sum_{k=1}^infty k^2 x^{2k}$ it is using finite calculus. Consider the indefinite sum $sum (k^underline 2+k) y^k,delta k$, then taking limits in this indefinite sum and substituting $y=x^2$ we recover your series, because $k^2=k^underline 2+k$, where $k^underline 2=k(k-1)$ is a falling factorial of order $2$.



                                        In general it is easy to check that



                                        $$sum k^underline m,delta k=frac{k^underline{m+1}}{m+1}+B,quadDelta_k k^underline m=mk^underline{m-1}\ sum c^k,delta k=frac{c^k}{c-1}+B,quad Delta_k c^k=(c-1) c^ktag1$$



                                        where $B$ represent and arbitrary periodic function of period one and $c$ some arbitrary constant. Also we have the tool of summation by parts, that can be written as



                                        $$sum f(k)Delta_k g(k), delta k=f(k)g(k)-sum g(k+1)Delta_k f(k),delta ktag2$$



                                        Thus, coming back to our sum, we have that



                                        $$sum (k^underline 2+k)y^k,delta k=frac1{y-1}y^k(k^underline 2+k)-frac1{y-1}sum y^{k+1}(2k+1),delta k\
                                        =frac1{y-1}left(y^k(k^underline 2+k)-left(frac{y^{k+1}(2k+1)}{y-1}-frac1{y-1}sum y^{k+2}2,delta kright)right)\
                                        =frac{y^k(k^underline 2+k)}{y-1}-frac{y^{k+1}(2k+1)}{(y-1)^2}+frac{y^{k+2}2}{(y-1)^3}$$



                                        where we applied twice summation by parts and the identities stated in $(1)$. Now, considering $|y|<1$, taking limits above we find that



                                        $$sum_{k=1}^infty k^2 y^k=frac{y}{1-y}+frac{3y^2}{(1-y)^2}+frac{2y^3}{(1-y)^3}=-yfrac{1+y}{(1-y)^3}$$



                                        Then you can substitute back $y=x^2$ to find the final expression.






                                        share|cite|improve this answer












                                        An alternative way to evaluate the sum $sum_{k=1}^infty k^2 x^{2k}$ it is using finite calculus. Consider the indefinite sum $sum (k^underline 2+k) y^k,delta k$, then taking limits in this indefinite sum and substituting $y=x^2$ we recover your series, because $k^2=k^underline 2+k$, where $k^underline 2=k(k-1)$ is a falling factorial of order $2$.



                                        In general it is easy to check that



                                        $$sum k^underline m,delta k=frac{k^underline{m+1}}{m+1}+B,quadDelta_k k^underline m=mk^underline{m-1}\ sum c^k,delta k=frac{c^k}{c-1}+B,quad Delta_k c^k=(c-1) c^ktag1$$



                                        where $B$ represent and arbitrary periodic function of period one and $c$ some arbitrary constant. Also we have the tool of summation by parts, that can be written as



                                        $$sum f(k)Delta_k g(k), delta k=f(k)g(k)-sum g(k+1)Delta_k f(k),delta ktag2$$



                                        Thus, coming back to our sum, we have that



                                        $$sum (k^underline 2+k)y^k,delta k=frac1{y-1}y^k(k^underline 2+k)-frac1{y-1}sum y^{k+1}(2k+1),delta k\
                                        =frac1{y-1}left(y^k(k^underline 2+k)-left(frac{y^{k+1}(2k+1)}{y-1}-frac1{y-1}sum y^{k+2}2,delta kright)right)\
                                        =frac{y^k(k^underline 2+k)}{y-1}-frac{y^{k+1}(2k+1)}{(y-1)^2}+frac{y^{k+2}2}{(y-1)^3}$$



                                        where we applied twice summation by parts and the identities stated in $(1)$. Now, considering $|y|<1$, taking limits above we find that



                                        $$sum_{k=1}^infty k^2 y^k=frac{y}{1-y}+frac{3y^2}{(1-y)^2}+frac{2y^3}{(1-y)^3}=-yfrac{1+y}{(1-y)^3}$$



                                        Then you can substitute back $y=x^2$ to find the final expression.







                                        share|cite|improve this answer












                                        share|cite|improve this answer



                                        share|cite|improve this answer










                                        answered Dec 16 at 10:26









                                        Masacroso

                                        12.9k41746




                                        12.9k41746























                                            1














                                            Hint:



                                            $$sum t^k=f(t),$$



                                            $$sum kt^{k-1}=f'(t),$$



                                            $$sum kt^k=tf'(t),$$



                                            $$sum k^2t^{k-1}=(tf'(t)),$$



                                            $$sum k^2t^k=t(tf'(t))',$$



                                            $$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$



                                            (Caution, the derivative is taken on $t$, not on $x$.)






                                            share|cite|improve this answer




























                                              1














                                              Hint:



                                              $$sum t^k=f(t),$$



                                              $$sum kt^{k-1}=f'(t),$$



                                              $$sum kt^k=tf'(t),$$



                                              $$sum k^2t^{k-1}=(tf'(t)),$$



                                              $$sum k^2t^k=t(tf'(t))',$$



                                              $$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$



                                              (Caution, the derivative is taken on $t$, not on $x$.)






                                              share|cite|improve this answer


























                                                1












                                                1








                                                1






                                                Hint:



                                                $$sum t^k=f(t),$$



                                                $$sum kt^{k-1}=f'(t),$$



                                                $$sum kt^k=tf'(t),$$



                                                $$sum k^2t^{k-1}=(tf'(t)),$$



                                                $$sum k^2t^k=t(tf'(t))',$$



                                                $$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$



                                                (Caution, the derivative is taken on $t$, not on $x$.)






                                                share|cite|improve this answer














                                                Hint:



                                                $$sum t^k=f(t),$$



                                                $$sum kt^{k-1}=f'(t),$$



                                                $$sum kt^k=tf'(t),$$



                                                $$sum k^2t^{k-1}=(tf'(t)),$$



                                                $$sum k^2t^k=t(tf'(t))',$$



                                                $$sum k^2x^{2k}=x^2(x^2f'(x^2))'.$$



                                                (Caution, the derivative is taken on $t$, not on $x$.)







                                                share|cite|improve this answer














                                                share|cite|improve this answer



                                                share|cite|improve this answer








                                                edited Dec 16 at 10:28

























                                                answered Dec 16 at 8:45









                                                Yves Daoust

                                                124k671221




                                                124k671221






























                                                    draft saved

                                                    draft discarded




















































                                                    Thanks for contributing an answer to Mathematics Stack Exchange!


                                                    • Please be sure to answer the question. Provide details and share your research!

                                                    But avoid



                                                    • Asking for help, clarification, or responding to other answers.

                                                    • Making statements based on opinion; back them up with references or personal experience.


                                                    Use MathJax to format equations. MathJax reference.


                                                    To learn more, see our tips on writing great answers.





                                                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                                    Please pay close attention to the following guidance:


                                                    • Please be sure to answer the question. Provide details and share your research!

                                                    But avoid



                                                    • Asking for help, clarification, or responding to other answers.

                                                    • Making statements based on opinion; back them up with references or personal experience.


                                                    To learn more, see our tips on writing great answers.




                                                    draft saved


                                                    draft discarded














                                                    StackExchange.ready(
                                                    function () {
                                                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042344%2fevaluating-sum-infty-k-1-frack22k-12k2k12k2%23new-answer', 'question_page');
                                                    }
                                                    );

                                                    Post as a guest















                                                    Required, but never shown





















































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown

































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown







                                                    Popular posts from this blog

                                                    Morgemoulin

                                                    Scott Moir

                                                    Souastre