Fundamental group of an open subscheme of a normal scheme
up vote
2
down vote
favorite
Let $X$ be an irreducible normal projective scheme over $mathbb{C}$. Let $U$ be the open subscheme of smooth points of $X$. Consider the closed subscheme $Z = X setminus U$. Suppose that the codimension of $Z$ in $X$ is at least $2$. Is it true that the fundamental group of $U$ and $X$ are isomorphic?
Edit: Is it true for $X$ an integral normal projective scheme over $mathbb{C}$?
ag.algebraic-geometry
add a comment |
up vote
2
down vote
favorite
Let $X$ be an irreducible normal projective scheme over $mathbb{C}$. Let $U$ be the open subscheme of smooth points of $X$. Consider the closed subscheme $Z = X setminus U$. Suppose that the codimension of $Z$ in $X$ is at least $2$. Is it true that the fundamental group of $U$ and $X$ are isomorphic?
Edit: Is it true for $X$ an integral normal projective scheme over $mathbb{C}$?
ag.algebraic-geometry
4
In codimension $2$, is it not a cone over an elliptic curve a counterexample?
– Francesco Polizzi
Nov 19 at 16:05
1
@FrancescoPolizzi Is cone over an elliptic curve reduced? (sorry for asking a stupid question). Actually, I want to know the result for X normal projective integral scheme over $mathbb{C}$.
– Anonymous
Nov 19 at 16:53
Of course it is reduced
– Francesco Polizzi
Nov 19 at 17:02
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Let $X$ be an irreducible normal projective scheme over $mathbb{C}$. Let $U$ be the open subscheme of smooth points of $X$. Consider the closed subscheme $Z = X setminus U$. Suppose that the codimension of $Z$ in $X$ is at least $2$. Is it true that the fundamental group of $U$ and $X$ are isomorphic?
Edit: Is it true for $X$ an integral normal projective scheme over $mathbb{C}$?
ag.algebraic-geometry
Let $X$ be an irreducible normal projective scheme over $mathbb{C}$. Let $U$ be the open subscheme of smooth points of $X$. Consider the closed subscheme $Z = X setminus U$. Suppose that the codimension of $Z$ in $X$ is at least $2$. Is it true that the fundamental group of $U$ and $X$ are isomorphic?
Edit: Is it true for $X$ an integral normal projective scheme over $mathbb{C}$?
ag.algebraic-geometry
ag.algebraic-geometry
edited Nov 19 at 16:56
asked Nov 19 at 15:48
Anonymous
935
935
4
In codimension $2$, is it not a cone over an elliptic curve a counterexample?
– Francesco Polizzi
Nov 19 at 16:05
1
@FrancescoPolizzi Is cone over an elliptic curve reduced? (sorry for asking a stupid question). Actually, I want to know the result for X normal projective integral scheme over $mathbb{C}$.
– Anonymous
Nov 19 at 16:53
Of course it is reduced
– Francesco Polizzi
Nov 19 at 17:02
add a comment |
4
In codimension $2$, is it not a cone over an elliptic curve a counterexample?
– Francesco Polizzi
Nov 19 at 16:05
1
@FrancescoPolizzi Is cone over an elliptic curve reduced? (sorry for asking a stupid question). Actually, I want to know the result for X normal projective integral scheme over $mathbb{C}$.
– Anonymous
Nov 19 at 16:53
Of course it is reduced
– Francesco Polizzi
Nov 19 at 17:02
4
4
In codimension $2$, is it not a cone over an elliptic curve a counterexample?
– Francesco Polizzi
Nov 19 at 16:05
In codimension $2$, is it not a cone over an elliptic curve a counterexample?
– Francesco Polizzi
Nov 19 at 16:05
1
1
@FrancescoPolizzi Is cone over an elliptic curve reduced? (sorry for asking a stupid question). Actually, I want to know the result for X normal projective integral scheme over $mathbb{C}$.
– Anonymous
Nov 19 at 16:53
@FrancescoPolizzi Is cone over an elliptic curve reduced? (sorry for asking a stupid question). Actually, I want to know the result for X normal projective integral scheme over $mathbb{C}$.
– Anonymous
Nov 19 at 16:53
Of course it is reduced
– Francesco Polizzi
Nov 19 at 17:02
Of course it is reduced
– Francesco Polizzi
Nov 19 at 17:02
add a comment |
2 Answers
2
active
oldest
votes
up vote
4
down vote
accepted
Let me expand my comment into an answer.
Take as $X$ the cone of vertex $v$ over an elliptic curve $E$. Then $X$ is simply connected (this is a general property of projective cones). However, $U = X-{v}$ is not simply connected: in fact, the projection $pi colon U to E$ onto the basis gives $X$ the structure of a topological fibration with fiber homeomorphic to $mathbb{R}$, so the corresponding long exact sequence of homotopy groups yields $$pi_1(U) = pi_1(E) = mathbb{Z} oplus mathbb{Z}.$$
add a comment |
up vote
3
down vote
In fact, quite the opposite tends to be true. Mumford [1] showed that for $(X,0)$ the germ of a normal surface singularity (over $mathbf{C}$), $U=Xsetminus 0$, one has $pi_1(U)={1}$ if and only if $X$ is smooth. At the same time, $pi_1(X) = {1}$ since $0to X$ is a homotopy equivalence.
If $X$ is smooth, this is true (the etale variant is called "Zariski-Nagata purity").
EDIT. To address Francesco's comment: of course the example is not projective. The easiest projective example was given by Francesco in his comment: $X$ is the (projective) cone over an elliptic curve $E$ and $U$ the complement of the vertex. Then $pi_1(U)= pi_1(E) = mathbb{Z}^2$ and $pi_1(X) = {1}$.
[1] Mumford, D., The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math., Inst. Hautes Étud. Sci. 9, 5-22 (1961). ZBL0108.16801.
Well, strictly speaking, $X$ is not projective in your example.
– Francesco Polizzi
Nov 19 at 17:04
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
Let me expand my comment into an answer.
Take as $X$ the cone of vertex $v$ over an elliptic curve $E$. Then $X$ is simply connected (this is a general property of projective cones). However, $U = X-{v}$ is not simply connected: in fact, the projection $pi colon U to E$ onto the basis gives $X$ the structure of a topological fibration with fiber homeomorphic to $mathbb{R}$, so the corresponding long exact sequence of homotopy groups yields $$pi_1(U) = pi_1(E) = mathbb{Z} oplus mathbb{Z}.$$
add a comment |
up vote
4
down vote
accepted
Let me expand my comment into an answer.
Take as $X$ the cone of vertex $v$ over an elliptic curve $E$. Then $X$ is simply connected (this is a general property of projective cones). However, $U = X-{v}$ is not simply connected: in fact, the projection $pi colon U to E$ onto the basis gives $X$ the structure of a topological fibration with fiber homeomorphic to $mathbb{R}$, so the corresponding long exact sequence of homotopy groups yields $$pi_1(U) = pi_1(E) = mathbb{Z} oplus mathbb{Z}.$$
add a comment |
up vote
4
down vote
accepted
up vote
4
down vote
accepted
Let me expand my comment into an answer.
Take as $X$ the cone of vertex $v$ over an elliptic curve $E$. Then $X$ is simply connected (this is a general property of projective cones). However, $U = X-{v}$ is not simply connected: in fact, the projection $pi colon U to E$ onto the basis gives $X$ the structure of a topological fibration with fiber homeomorphic to $mathbb{R}$, so the corresponding long exact sequence of homotopy groups yields $$pi_1(U) = pi_1(E) = mathbb{Z} oplus mathbb{Z}.$$
Let me expand my comment into an answer.
Take as $X$ the cone of vertex $v$ over an elliptic curve $E$. Then $X$ is simply connected (this is a general property of projective cones). However, $U = X-{v}$ is not simply connected: in fact, the projection $pi colon U to E$ onto the basis gives $X$ the structure of a topological fibration with fiber homeomorphic to $mathbb{R}$, so the corresponding long exact sequence of homotopy groups yields $$pi_1(U) = pi_1(E) = mathbb{Z} oplus mathbb{Z}.$$
answered Nov 19 at 17:24
Francesco Polizzi
47k3124201
47k3124201
add a comment |
add a comment |
up vote
3
down vote
In fact, quite the opposite tends to be true. Mumford [1] showed that for $(X,0)$ the germ of a normal surface singularity (over $mathbf{C}$), $U=Xsetminus 0$, one has $pi_1(U)={1}$ if and only if $X$ is smooth. At the same time, $pi_1(X) = {1}$ since $0to X$ is a homotopy equivalence.
If $X$ is smooth, this is true (the etale variant is called "Zariski-Nagata purity").
EDIT. To address Francesco's comment: of course the example is not projective. The easiest projective example was given by Francesco in his comment: $X$ is the (projective) cone over an elliptic curve $E$ and $U$ the complement of the vertex. Then $pi_1(U)= pi_1(E) = mathbb{Z}^2$ and $pi_1(X) = {1}$.
[1] Mumford, D., The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math., Inst. Hautes Étud. Sci. 9, 5-22 (1961). ZBL0108.16801.
Well, strictly speaking, $X$ is not projective in your example.
– Francesco Polizzi
Nov 19 at 17:04
add a comment |
up vote
3
down vote
In fact, quite the opposite tends to be true. Mumford [1] showed that for $(X,0)$ the germ of a normal surface singularity (over $mathbf{C}$), $U=Xsetminus 0$, one has $pi_1(U)={1}$ if and only if $X$ is smooth. At the same time, $pi_1(X) = {1}$ since $0to X$ is a homotopy equivalence.
If $X$ is smooth, this is true (the etale variant is called "Zariski-Nagata purity").
EDIT. To address Francesco's comment: of course the example is not projective. The easiest projective example was given by Francesco in his comment: $X$ is the (projective) cone over an elliptic curve $E$ and $U$ the complement of the vertex. Then $pi_1(U)= pi_1(E) = mathbb{Z}^2$ and $pi_1(X) = {1}$.
[1] Mumford, D., The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math., Inst. Hautes Étud. Sci. 9, 5-22 (1961). ZBL0108.16801.
Well, strictly speaking, $X$ is not projective in your example.
– Francesco Polizzi
Nov 19 at 17:04
add a comment |
up vote
3
down vote
up vote
3
down vote
In fact, quite the opposite tends to be true. Mumford [1] showed that for $(X,0)$ the germ of a normal surface singularity (over $mathbf{C}$), $U=Xsetminus 0$, one has $pi_1(U)={1}$ if and only if $X$ is smooth. At the same time, $pi_1(X) = {1}$ since $0to X$ is a homotopy equivalence.
If $X$ is smooth, this is true (the etale variant is called "Zariski-Nagata purity").
EDIT. To address Francesco's comment: of course the example is not projective. The easiest projective example was given by Francesco in his comment: $X$ is the (projective) cone over an elliptic curve $E$ and $U$ the complement of the vertex. Then $pi_1(U)= pi_1(E) = mathbb{Z}^2$ and $pi_1(X) = {1}$.
[1] Mumford, D., The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math., Inst. Hautes Étud. Sci. 9, 5-22 (1961). ZBL0108.16801.
In fact, quite the opposite tends to be true. Mumford [1] showed that for $(X,0)$ the germ of a normal surface singularity (over $mathbf{C}$), $U=Xsetminus 0$, one has $pi_1(U)={1}$ if and only if $X$ is smooth. At the same time, $pi_1(X) = {1}$ since $0to X$ is a homotopy equivalence.
If $X$ is smooth, this is true (the etale variant is called "Zariski-Nagata purity").
EDIT. To address Francesco's comment: of course the example is not projective. The easiest projective example was given by Francesco in his comment: $X$ is the (projective) cone over an elliptic curve $E$ and $U$ the complement of the vertex. Then $pi_1(U)= pi_1(E) = mathbb{Z}^2$ and $pi_1(X) = {1}$.
[1] Mumford, D., The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math., Inst. Hautes Étud. Sci. 9, 5-22 (1961). ZBL0108.16801.
edited Nov 19 at 17:16
answered Nov 19 at 17:02
Piotr Achinger
7,90312751
7,90312751
Well, strictly speaking, $X$ is not projective in your example.
– Francesco Polizzi
Nov 19 at 17:04
add a comment |
Well, strictly speaking, $X$ is not projective in your example.
– Francesco Polizzi
Nov 19 at 17:04
Well, strictly speaking, $X$ is not projective in your example.
– Francesco Polizzi
Nov 19 at 17:04
Well, strictly speaking, $X$ is not projective in your example.
– Francesco Polizzi
Nov 19 at 17:04
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f315697%2ffundamental-group-of-an-open-subscheme-of-a-normal-scheme%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
In codimension $2$, is it not a cone over an elliptic curve a counterexample?
– Francesco Polizzi
Nov 19 at 16:05
1
@FrancescoPolizzi Is cone over an elliptic curve reduced? (sorry for asking a stupid question). Actually, I want to know the result for X normal projective integral scheme over $mathbb{C}$.
– Anonymous
Nov 19 at 16:53
Of course it is reduced
– Francesco Polizzi
Nov 19 at 17:02